Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching lo...Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching losses from both disturbed and mature forests were quite high (14.6 and 29.2 kg N ha-1 year-1, respectively), accounting for 57% and 80% of their corresponding atmospheric N inputs. N leaching losses were substantially increased following the first 1.5 years of N applications in both forests. The average increases induced by the addition of 50 and 100 kg N ha-1 year-1 were 36.5 and 24.9 kg N ha-1 year-1, respectively, in the mature forest, accounting for 73.0% and 24.9% of the annual amount of N added, and 14.2 and 16.8 kg N ha-1 year-1 in the disturbed forest, accounting for 28.4% and 16.8% of the added N. Great N leaching and a fast N leaching response to N additions in the mature forest might result from long-term N accumulation and high ambient N deposition load (greater than 30 kg N ha-1 year-1 over the past 15 years), whereas in the disturbed forest, it might result from the human disturbance and high ambient N deposition load. These results suggest that both disturbed and mature forests in the study region may be sensitive to increasing N deposition.展开更多
Soil erosion represents one of the most important destructive phenomenon of the soil, through surface and depth erosion. The activity of water erosion in Albania is favoured from some factors like relief, geological s...Soil erosion represents one of the most important destructive phenomenon of the soil, through surface and depth erosion. The activity of water erosion in Albania is favoured from some factors like relief, geological structure, slope, soil, etc. Erosion depth growth is closely related with the vegetal cover ravage high rate and in the first instance that of woodland flora in sloping ground. The degradation of the flora or total destruction of it is defined from many factors, but in notably from social-economical system of every country. It can be also seen some special areas in our country were the results of the human negative impacts in natural environment. The erosion phenomenon is more problematic, especially during intensive raining time.展开更多
基金supported by the National Natural Science Foundation of China (No.30670392)the Knowledge InnovationProgram of the Chinese Academy of Sciences (Nos.KZCX2-YW-432-2 and KSCX2-SW-133).
文摘Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching losses from both disturbed and mature forests were quite high (14.6 and 29.2 kg N ha-1 year-1, respectively), accounting for 57% and 80% of their corresponding atmospheric N inputs. N leaching losses were substantially increased following the first 1.5 years of N applications in both forests. The average increases induced by the addition of 50 and 100 kg N ha-1 year-1 were 36.5 and 24.9 kg N ha-1 year-1, respectively, in the mature forest, accounting for 73.0% and 24.9% of the annual amount of N added, and 14.2 and 16.8 kg N ha-1 year-1 in the disturbed forest, accounting for 28.4% and 16.8% of the added N. Great N leaching and a fast N leaching response to N additions in the mature forest might result from long-term N accumulation and high ambient N deposition load (greater than 30 kg N ha-1 year-1 over the past 15 years), whereas in the disturbed forest, it might result from the human disturbance and high ambient N deposition load. These results suggest that both disturbed and mature forests in the study region may be sensitive to increasing N deposition.
文摘Soil erosion represents one of the most important destructive phenomenon of the soil, through surface and depth erosion. The activity of water erosion in Albania is favoured from some factors like relief, geological structure, slope, soil, etc. Erosion depth growth is closely related with the vegetal cover ravage high rate and in the first instance that of woodland flora in sloping ground. The degradation of the flora or total destruction of it is defined from many factors, but in notably from social-economical system of every country. It can be also seen some special areas in our country were the results of the human negative impacts in natural environment. The erosion phenomenon is more problematic, especially during intensive raining time.