A destructive extreme heat attacked Northeast Asia(NEA)in the midsummer of 2018,characterized by the average midsummer Tmax(daily maximum air temperature at 2 m)ranking first during the study period.The current study ...A destructive extreme heat attacked Northeast Asia(NEA)in the midsummer of 2018,characterized by the average midsummer Tmax(daily maximum air temperature at 2 m)ranking first during the study period.The current study indicates that the cyclonic anomaly over the western North Pacific(WNP)was an important cause,which presents an anomaly of two standard deviations.The cyclonic anomaly over the WNP was accompanied by anomalous convection,which favored descending and anticyclonic anomalies over NEA through a local meridional cell.The anticyclonic anomaly over NEA corresponds to the northwestward extension of the WNP subtropical high and facilitated the occurrence of extreme heat.The tropical sea surface temperature anomaly(SSTA)presents a La Ni?a decaying episode,but the SSTA over the tropical Pacific and North Indian Ocean was weak in the summer.In contrast,the southeastern tropical Indian Ocean(SETIO)was obviously cool,which was the coolest after detrending.The SETIO cooling triggered a low-level southeasterly anomaly,which turned into a southwesterly after crossing the equator,due to the Coriolis force.The southwesterly anomaly extended eastwards and favored the cyclonic anomaly over the WNP.Meanwhile,the circulation anomalies over the SETIO and WNP were connected via a local meridional cell,with the ascending branch over the WNP.Moreover,the above mechanism also operates for the climate statistics,verifying the robust in?uence of the SETIO SSTA.Considering the consistency of the SETIO SSTA,it could be a potential predictor for the climate over the WNP and NEA.展开更多
A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was report...A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was reported in this paper, showing clear and strong western boundary currents, equato- rial currents, and subtropical gyres in the North and South Pacific regions in velocity field, with a more systematic structure in the North Pacific.展开更多
The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important compo...The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important components within the ASM:South Asian summer monsoon(SASM)and East Asian summer monsoon(EASM).Although current state-of-the-art climate models projected increased precipitation in both SASM and EASM due to the increase of atmospheric moisture,their circulation changes differ markedlyÐA robust strengthening(weakening)of EASM(SASM)circulation was projected.By separating fast and slow processes in response to increased CO_(2) radiative forcing,we demonstrate that EASM circulation strengthening is attributed to the fast land warming and associated Tibetan Plateau thermal forcing.In contrast,SASM circulation weakening is primarily attributed to an El Niño-like oceanic warming pattern in the tropical Pacific and associated suppressed precipitation over the Maritime Continent.展开更多
基金supported by the National Key R&D Program of China [grant number 2016YFA0600601]the National Natural Science Foundation of China [grant numbers41605027,41530530,and 41721004]the Fundamental Research Funds for the Central Universities
文摘A destructive extreme heat attacked Northeast Asia(NEA)in the midsummer of 2018,characterized by the average midsummer Tmax(daily maximum air temperature at 2 m)ranking first during the study period.The current study indicates that the cyclonic anomaly over the western North Pacific(WNP)was an important cause,which presents an anomaly of two standard deviations.The cyclonic anomaly over the WNP was accompanied by anomalous convection,which favored descending and anticyclonic anomalies over NEA through a local meridional cell.The anticyclonic anomaly over NEA corresponds to the northwestward extension of the WNP subtropical high and facilitated the occurrence of extreme heat.The tropical sea surface temperature anomaly(SSTA)presents a La Ni?a decaying episode,but the SSTA over the tropical Pacific and North Indian Ocean was weak in the summer.In contrast,the southeastern tropical Indian Ocean(SETIO)was obviously cool,which was the coolest after detrending.The SETIO cooling triggered a low-level southeasterly anomaly,which turned into a southwesterly after crossing the equator,due to the Coriolis force.The southwesterly anomaly extended eastwards and favored the cyclonic anomaly over the WNP.Meanwhile,the circulation anomalies over the SETIO and WNP were connected via a local meridional cell,with the ascending branch over the WNP.Moreover,the above mechanism also operates for the climate statistics,verifying the robust in?uence of the SETIO SSTA.Considering the consistency of the SETIO SSTA,it could be a potential predictor for the climate over the WNP and NEA.
基金Supported by the NSFC (Key Program, No. 90411013)
文摘A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was reported in this paper, showing clear and strong western boundary currents, equato- rial currents, and subtropical gyres in the North and South Pacific regions in velocity field, with a more systematic structure in the North Pacific.
基金supported by the National Natural Science Foundation of China (42088101)the National Key Research & Development Program of China (2017YFA0603802)US National Science Foundation (AGS-2006553)
文摘The Asian summer monsoon(ASM)is the most energetic circulation system.Projecting its future change is critical for the mitigation and adaptation of billions of people living in the region.There are two important components within the ASM:South Asian summer monsoon(SASM)and East Asian summer monsoon(EASM).Although current state-of-the-art climate models projected increased precipitation in both SASM and EASM due to the increase of atmospheric moisture,their circulation changes differ markedlyÐA robust strengthening(weakening)of EASM(SASM)circulation was projected.By separating fast and slow processes in response to increased CO_(2) radiative forcing,we demonstrate that EASM circulation strengthening is attributed to the fast land warming and associated Tibetan Plateau thermal forcing.In contrast,SASM circulation weakening is primarily attributed to an El Niño-like oceanic warming pattern in the tropical Pacific and associated suppressed precipitation over the Maritime Continent.