期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
生物膜短程硝化系统的恢复及其转化为CANON工艺的过程 被引量:21
1
作者 付昆明 周厚田 +1 位作者 苏雪莹 王会芳 《环境科学》 EI CAS CSCD 北大核心 2017年第4期1536-1543,共8页
在温度为30℃±1℃条件下,以改性聚乙烯为填料,人工配置无机NH+4-N废水为进水,研究生物膜短程硝化系统的恢复过程.短程硝化首先通过过量曝气破坏,使NOB适应高浓度游离氨后,在连续曝气条件下,DO控制在0.5 mg·L^(-1)以下,FA控制... 在温度为30℃±1℃条件下,以改性聚乙烯为填料,人工配置无机NH+4-N废水为进水,研究生物膜短程硝化系统的恢复过程.短程硝化首先通过过量曝气破坏,使NOB适应高浓度游离氨后,在连续曝气条件下,DO控制在0.5 mg·L^(-1)以下,FA控制在1.5 mg·L^(-1)以上,维持反应器运行83 d未实现短程硝化,84 d改连续曝气为间歇曝气,出现NO-2-N积累现象,142 d再次验证这一规律.随着反应器的运行,生物膜系统中为ANAMMOX菌提供了生存环境,厌氧氨氧化作用产生,短程硝化系统逐步转化为CANON工艺,并逐渐增加进水NH+4-N浓度和进水流量,反应器的TN去除率与TN去除负荷逐渐提高.当反应器运行至450 d,TN去除率达到64.03%,去除负荷为2.52 kg·(m^3·d)^(-1).因此,一旦NOB适应了高浓度的游离氨,生物膜系统的短程硝化恢复不易实现,但间歇曝气是一个有效的方法,随着反应器的连续运行,短程硝化工艺最终转化为CANON工艺,而且,这一转变进一步强化了短程硝化的稳定性. 展开更多
关键词 生物膜 短程硝 亚硝酸化率 CANON工艺 游离氨 厌氧氨氧
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部