Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indica...Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.展开更多
Into the photooxidation process, several factors such as pH, time of irradiation, dose of UV light, lamp power, contaminant concentration, turbidity of the solution and the presence of salts can interfere with the pho...Into the photooxidation process, several factors such as pH, time of irradiation, dose of UV light, lamp power, contaminant concentration, turbidity of the solution and the presence of salts can interfere with the photodegradation of pollutants. This research aims to evaluate the influence of salts: NaCl, MgCl2, CaCI2, BaC12, CuCl2, Na2SO4, MgSO4, MnSO4, FeSO4, CuSO4, Na3PO4, K2CrO4 and K2Cr207 in concentrations of 0.0005 M, 0.005 M and 0.05 M during photodegradation of aqueous solution of 59.5 mg/L of nitrobenzene at a pH of 2.5. It was observed that the presence of salts such as CuCI2, CuSO4, FeSO4, K2CrO4 and K2Cr207 interfere negatively in the system UV/H202 applied for degradation of nitrobenzene; possibly by oxidation of Fe2+ to Fe3+ and Cu+ to Cu2+ in the Cr case, due to the difficulty of transforming the Cr6+ to Cr3+ or because these solutions have color and act as radiation absorbing filter.展开更多
基金Projects(51472211,51502256)supported by the National Natural Science Foundation of ChinaProjects(2016GK4005,2016GK4030)supported by the Strategic New Industry of Hunan Province,ChinaProject(13C925)supported by the Research Foundation of Education Bureau of Hunan Province,China
文摘Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.
文摘Into the photooxidation process, several factors such as pH, time of irradiation, dose of UV light, lamp power, contaminant concentration, turbidity of the solution and the presence of salts can interfere with the photodegradation of pollutants. This research aims to evaluate the influence of salts: NaCl, MgCl2, CaCI2, BaC12, CuCl2, Na2SO4, MgSO4, MnSO4, FeSO4, CuSO4, Na3PO4, K2CrO4 and K2Cr207 in concentrations of 0.0005 M, 0.005 M and 0.05 M during photodegradation of aqueous solution of 59.5 mg/L of nitrobenzene at a pH of 2.5. It was observed that the presence of salts such as CuCI2, CuSO4, FeSO4, K2CrO4 and K2Cr207 interfere negatively in the system UV/H202 applied for degradation of nitrobenzene; possibly by oxidation of Fe2+ to Fe3+ and Cu+ to Cu2+ in the Cr case, due to the difficulty of transforming the Cr6+ to Cr3+ or because these solutions have color and act as radiation absorbing filter.