ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solutio...ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solution, and the ZnO precursors, i.e. the ethanol solu- tions of (CHaCOO)2Zn and LiOH. The transmission electron microscope, X-ray diffraction, and thermogravimetric analysis results show that the feeding order of ethanol solutions of (CH3COO)2Zn and LiOH in the second swelling step has great influence on the loading efficiency and the size of ZnO nanoparticles, but little on their crystal form. The photolumi- nescence and UV-Vis absorption behavior of ZnO/PS microspheres show that the PS shell can effectively avoid the fluorescence quenching effect.展开更多
文摘ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solution, and the ZnO precursors, i.e. the ethanol solu- tions of (CHaCOO)2Zn and LiOH. The transmission electron microscope, X-ray diffraction, and thermogravimetric analysis results show that the feeding order of ethanol solutions of (CH3COO)2Zn and LiOH in the second swelling step has great influence on the loading efficiency and the size of ZnO nanoparticles, but little on their crystal form. The photolumi- nescence and UV-Vis absorption behavior of ZnO/PS microspheres show that the PS shell can effectively avoid the fluorescence quenching effect.