期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于MI特征选择的车辆能耗高精度预测方法
1
作者 王宁 李秀峰 +4 位作者 聂辽栋 刘登程 于勤 樊华春 徐炜 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第S01期39-45,共7页
近年来,机器学习方法在车辆实时能耗预测方面得到了广泛应用,但实车采集数据中存在的精度不足、字段缺失以及多重共线性等问题,尤其是同款车型中驾驶工况和驾驶者行为存在显著差异,限制了能耗预测准确性和泛化能力的进一步提升。为此,... 近年来,机器学习方法在车辆实时能耗预测方面得到了广泛应用,但实车采集数据中存在的精度不足、字段缺失以及多重共线性等问题,尤其是同款车型中驾驶工况和驾驶者行为存在显著差异,限制了能耗预测准确性和泛化能力的进一步提升。为此,本文系统考虑特征冗余度、数据平衡性、货运趟次、运输能力、路段拥挤程度和司机驾驶时长等因素,使用交互信息(MI)方法选择关键特征,并构建司机特征画像作为独立特征,进而结合XGBoost、RF和MLP等机器学习方法提出一种基于MI特征选择的能耗高精度预测方法,然后基于120辆轻型卡车的T-BOX采集数据进行实例验证。结果表明,本文提出的预测方法能够显著提高不同驾驶行为和驾驶工况下的能耗预测精度,研究成果可为开发预测轻卡能耗的通用模型提供参考。 展开更多
关键词 车辆能耗预测 轻型卡车 交互信息方法 司机特征画像 机器学习
下载PDF
An Operational Method for Fast Detecting Abnormal Channels in Imaging Spectrometers
2
作者 MA Jiping LI Deren TONG Qingxi ZHENG Lanfen 《Geo-Spatial Information Science》 2002年第4期50-54,共5页
Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve t... Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve this problem,researchers should get rid of the data acquired by these channels.Selecting abnormal channels just in the way of visually examining each band image in a imaging data set is a conceivably hard and boring job.To relieve the burden,this paper proposes a method which exploits the spatial and spectral autocorrelations inherent in imaging spectrometer data,and can be used to speed up and,to a great degree,automate the detection of abnormal channels in an imaging spectrometer.This method is applied easily and successfully to one PHI data set and one Hymap data set,and can be applied to remotely sensed data from other hyperspectral sensors. 展开更多
关键词 imaging spectrometer mutual information IHR
下载PDF
A MNCIE method for registration of ultrasound images
3
作者 金晶 王强 沈毅 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期252-258,共7页
A new approach to the problem of registration of ultrasound images is presented, using a concept of Nonlinear Correlation Information Entropy (NCIE) as the matching criterion. The proposed method applies NCIE to measu... A new approach to the problem of registration of ultrasound images is presented, using a concept of Nonlinear Correlation Information Entropy (NCIE) as the matching criterion. The proposed method applies NCIE to measure the correlation degree between the image intensities of corresponding voxel in the floating and reference images. Registration is achieved by adjustment of the relative position until NCIE between the images is maximized. However, unlike mutual information (MI), NCIE varies in the closed interval [0, 1], and around the extremum it varies sharply, which makes it possible that thresholds of NCIE can be used to boost the search for the registration transformation. Using this feature of NCIE, we combine the downhill simplex searching algorithm to register the ultrasound images. The simulations are conducted to testify the effectiveness and rapidity of the proposed registration method, in which the ultrasound floating images are aligned to the reference images with required registration accuracy. Moreover, the NCIE based method can overcome local minima problem by setting thresholds and can take care of the differences in contrast between the floating and reference images. 展开更多
关键词 image registration nonlinear correlation information entropy mutual information downhill simplex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部