完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器(Consensus based Multiple Model Information Filter,C-MMIF)。C-MMIF基于标准IMM框架,保...完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器(Consensus based Multiple Model Information Filter,C-MMIF)。C-MMIF基于标准IMM框架,保证了估计最优性;并通过构造目标运动模式概率和状态估计的信息滤波形式,使节点间运算相互独立。同时,每个独立节点仅需与其相邻节点通讯,利用平均网络共识分布式优化算法对自身信息状态进行更新,实现节点间对目标运动模式及状态的一致估计。最后在无人机与地面传感器网络协同对地机动目标跟踪场景下进行算法仿真验证,结果证明该方法可以在无融合处理中心且网络拓扑变化情况下,使各节点实现对机动目标的一致有效跟踪。展开更多
There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope c...There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well.展开更多
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,...To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.展开更多
文摘完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器(Consensus based Multiple Model Information Filter,C-MMIF)。C-MMIF基于标准IMM框架,保证了估计最优性;并通过构造目标运动模式概率和状态估计的信息滤波形式,使节点间运算相互独立。同时,每个独立节点仅需与其相邻节点通讯,利用平均网络共识分布式优化算法对自身信息状态进行更新,实现节点间对目标运动模式及状态的一致估计。最后在无人机与地面传感器网络协同对地机动目标跟踪场景下进行算法仿真验证,结果证明该方法可以在无融合处理中心且网络拓扑变化情况下,使各节点实现对机动目标的一致有效跟踪。
基金Supported by the National High Technology Research and Development Program of China(No.2012AA061101)the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information(Nanjing University of Science and Technology),Ministry of Education(No.3092013012205)
文摘There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well.
基金National Natural Science Foundation of China(No.61663020)Project of Education Department of Gansu Province(No.2016B-036)
文摘To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.