期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
多速率交互式多模型粒子滤波研究
1
作者 齐立峰 冯新喜 李峰 《指挥控制与仿真》 2008年第2期5-7,10,共4页
由于粒子滤波的算法原理,其计算量很大。研究了针对机动目标的交互式多模型粒子滤波器(IMMPF)算法和多速率交互式多模型(MRIMM)算法,提出了多速率交互式多模型粒子滤波器(MRIMMPF)算法。该算法是在交互式多模型粒子滤波器(IMMPF)的基础... 由于粒子滤波的算法原理,其计算量很大。研究了针对机动目标的交互式多模型粒子滤波器(IMMPF)算法和多速率交互式多模型(MRIMM)算法,提出了多速率交互式多模型粒子滤波器(MRIMMPF)算法。该算法是在交互式多模型粒子滤波器(IMMPF)的基础上引入多速率技术,期望在保持IMMPF的性能同时能够减少因为粒子滤波带来的计算量;最后通过和一般基于EKF的IMM算法、IMMPF算法的比较,验证了该算法的有效性。 展开更多
关键词 交互多模型 粒子滤波 多速率 多速率交互多模型粒子滤波器
下载PDF
基于交互式多模型MSCKF的双目视觉/惯性里程计算法 被引量:1
2
作者 王磊 程向红 +1 位作者 李进 王乐 《中国惯性技术学报》 EI CSCD 北大核心 2021年第2期221-228,236,共9页
针对复杂环境中双目视觉/惯性里程计系统模型不固定和量测噪声易发生变化的问题,提出了基于滤波器估计的紧耦合视觉惯性里程计(VIO)信息融合方法。将交互式多模型(IMM)估计与多状态约束卡尔曼滤波(MSCKF)算法相结合提出一种交互式多模... 针对复杂环境中双目视觉/惯性里程计系统模型不固定和量测噪声易发生变化的问题,提出了基于滤波器估计的紧耦合视觉惯性里程计(VIO)信息融合方法。将交互式多模型(IMM)估计与多状态约束卡尔曼滤波(MSCKF)算法相结合提出一种交互式多模型多状态约束卡尔曼滤波(IMM-MSCKF)算法。该算法以MSCKF为模型匹配子滤波器,将各子滤波器的输入、输出进行交互融合,实现对VIO系统状态估计。通过KITTI数据集对IMM-MSCKF算法进行了仿真验证,该算法姿态和水平位置估计均方根误差分别为0.36°和11.62 m,相比于EKF和MSCKF算法,其姿态估计精度分别提升了56%和41%,其水平位置估计精度分别提升了51%和81%,仿真结果表明该算法具有更好的估计精度和鲁棒性。 展开更多
关键词 视觉惯性里程计 双目立体视觉 多状态约束卡尔曼滤波器 交互多模型滤波器 组合导航
下载PDF
基于交互式多模型的多传感器组合导航系统 被引量:4
3
作者 林雪原 《兵工自动化》 2011年第6期27-30,共4页
针对复杂环境中组合导航系统模型参数变化导致单一参数滤波器滤波精度下降的问题,对基于交互式多模型的多传感器组合导航系统进行研究。给出状态基于全局信息的融合估计公式,将交互式多模型卡尔曼滤波算法应用于SST/GPS/SINS多传感器组... 针对复杂环境中组合导航系统模型参数变化导致单一参数滤波器滤波精度下降的问题,对基于交互式多模型的多传感器组合导航系统进行研究。给出状态基于全局信息的融合估计公式,将交互式多模型卡尔曼滤波算法应用于SST/GPS/SINS多传感器组合导航系统,并与单一模型下的卡尔曼滤波方法进行比较。仿真实验结果表明,该方法能提高组合导航系统的滤波精度与可靠性,但当实际的模型集不能覆盖实际的所有模态时,系统的滤波精度会有所下降。 展开更多
关键词 多传感器组合导航 交互多模型滤波器 融合算法
下载PDF
多传感器多模型多尺度组合导航系统算法 被引量:2
4
作者 林雪原 郭丽龙 王捷 《海军航空工程学院学报》 2013年第2期101-106,共6页
多传感器组合导航系统是组合导航发展的方向之一。针对复杂环境,多模型自适应算法可以较好地解决模型及参数不确定的问题;而多尺度融合算法将基于模型的动态系统分析与具有统计特性的多尺度信号变换方法相结合,可有效提高系统的滤波精... 多传感器组合导航系统是组合导航发展的方向之一。针对复杂环境,多模型自适应算法可以较好地解决模型及参数不确定的问题;而多尺度融合算法将基于模型的动态系统分析与具有统计特性的多尺度信号变换方法相结合,可有效提高系统的滤波精度。为此,文章将多模型估计与多尺度滤波算法相结合构成多模型多尺度滤波算法,该算法用于多组合导航系统后,经仿真验证,相对于多模型或单模型多尺度滤波算法,系统的滤波精度明显提高。 展开更多
关键词 多传感器组合导航 交互多模型滤波器 多尺度滤波算法 融合算法
下载PDF
WSNs下一种自适应多传感器协同目标跟踪策略 被引量:3
5
作者 冯林方 胥布工 刘永桂 《计算机应用研究》 CSCD 北大核心 2010年第11期4222-4225,4241,共5页
对WSNs中机动目标跟踪问题提出一种自适应多传感器协同跟踪策略。该策略能根据目标的移动位置,动态地唤醒无线传感器网络中部分传感器节点形成分簇,并选择合适的簇首和采样间隔进行目标跟踪。簇内节点通过协作感知以及测量信息融合,提... 对WSNs中机动目标跟踪问题提出一种自适应多传感器协同跟踪策略。该策略能根据目标的移动位置,动态地唤醒无线传感器网络中部分传感器节点形成分簇,并选择合适的簇首和采样间隔进行目标跟踪。簇内节点通过协作感知以及测量信息融合,提高了跟踪精度,同时自适应可变采样间隔节约了通信能量和计算资源,满足了跟踪系统的实时性要求。提出了传感器网络能量均衡分配的指标,提高了网络的可靠性。由于模型的非线性和目标运动的机动性,采用IMM滤波器进行目标状态估计。仿真结果表明,与NSSS和DGSS相比,跟踪精度明显提高;与DCSS相比,在保证一定跟踪精度的同时,节约了能量消耗。 展开更多
关键词 无线传感器网络 交互多模型滤波器 目标跟踪 多传感器协同 变采样间隔
下载PDF
分布式被动传感器网异步采样下的机动目标跟踪 被引量:2
6
作者 刘宗香 谢维信 +1 位作者 杨烜 黄敬雄 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第6期1441-1444,共4页
针对分布式被动传感器网的特点,提出了一种异步采样条件下机动目标跟踪方法。该方法采用交互式多模型概率数据互联滤波器跟踪机动目标。为启动滤波器,采用最大似然法估计目标初始状态;为适应异步观测条件,提出了马尔可夫转移概率计算方... 针对分布式被动传感器网的特点,提出了一种异步采样条件下机动目标跟踪方法。该方法采用交互式多模型概率数据互联滤波器跟踪机动目标。为启动滤波器,采用最大似然法估计目标初始状态;为适应异步观测条件,提出了马尔可夫转移概率计算方法。仿真实验表明,在分布式被动传感器网中采用该算法能有效进行机动目标跟踪。 展开更多
关键词 目标跟踪 交互多模型-概率数据互联滤波器 被动传感器网 马尔可夫转移概率
下载PDF
基于UKF的马尔可夫参数自适应IFIMM算法 被引量:3
7
作者 夏忠婷 汪圣利 武洋 《现代雷达》 CSCD 北大核心 2009年第5期43-47,共5页
给出了一种基于不敏卡尔曼滤波(UKF)的马尔可夫参数自适应的新息滤波器交互式多模型算法,较好地解决了非线性条件下机动目标跟踪的问题,可获得比基于扩展卡尔曼滤波的交互式多模型(IMM)算法和基于UKF的IMM算法更好的稳定性和计算精度,... 给出了一种基于不敏卡尔曼滤波(UKF)的马尔可夫参数自适应的新息滤波器交互式多模型算法,较好地解决了非线性条件下机动目标跟踪的问题,可获得比基于扩展卡尔曼滤波的交互式多模型(IMM)算法和基于UKF的IMM算法更好的稳定性和计算精度,还避免了复杂的Jacobi矩阵运算;该算法结合了马尔可夫参数自适应和新息滤波器技术,实现了马尔可夫转移矩阵的自适应和量测噪声的减小。最后,通过Monte Carlo仿真进一步验证了该方法的正确性和有效性。 展开更多
关键词 不敏卡尔曼滤波 马尔可夫参数自适应 新息滤波器交互多模型算法 目标跟踪
下载PDF
变拓扑非完全连通网络中的分布式机动目标跟踪算法研究
8
作者 刘杰 李建存 刘勇 《火控雷达技术》 2014年第3期63-70,共8页
完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器(Consensus based Multiple Model Information Filter,C-MMIF)。C-MMIF基于标准IMM框架,保... 完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器(Consensus based Multiple Model Information Filter,C-MMIF)。C-MMIF基于标准IMM框架,保证了估计最优性;并通过构造目标运动模式概率和状态估计的信息滤波形式,使节点间运算相互独立。同时,每个独立节点仅需与其相邻节点通讯,利用平均网络共识分布式优化算法对自身信息状态进行更新,实现节点间对目标运动模式及状态的一致估计。最后在无人机与地面传感器网络协同对地机动目标跟踪场景下进行算法仿真验证,结果证明该方法可以在无融合处理中心且网络拓扑变化情况下,使各节点实现对机动目标的一致有效跟踪。 展开更多
关键词 无线传感器网络 机动目标跟踪 网络共识 信息滤波器 交互多模型滤波器 变拓扑 非完全连通网络
下载PDF
Application of interacting multi-model algorithm in gyro signal processing
9
作者 王萌 Wang Xiaofeng +2 位作者 Zhang He Lu Jianshan Zhang Aijun 《High Technology Letters》 EI CAS 2014年第4期436-441,共6页
There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope c... There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well. 展开更多
关键词 GYRO interacting multiple model (IMM) Kalman filter singer model signal processing
下载PDF
Application of interacting multiple model in integrated positioning system of vehicle
10
作者 WEI Wen jun GAO Xue ze +1 位作者 GE Li rain GAO Zhong jun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期279-285,共7页
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,... To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system. 展开更多
关键词 VEHICLE integrated positioning system information fusion algorithm extended Kalman filter (KEF) interacting multiple model (IMM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部