针对单传感器交互式多模型联合概率数据关联滤波算法(Interacting Multiple Model Joint Probabilistic Data Associa-tion Filtering,IMMJPDAF)在非线性情况下跟踪精度低,且对于非高斯问题不适用的情况,文中提出一种基于粒子滤波的多...针对单传感器交互式多模型联合概率数据关联滤波算法(Interacting Multiple Model Joint Probabilistic Data Associa-tion Filtering,IMMJPDAF)在非线性情况下跟踪精度低,且对于非高斯问题不适用的情况,文中提出一种基于粒子滤波的多传感器交互式多模型多机动目标跟踪算法(Interacting Multiple Model Joint Probabilistic Data Association Particle Filtering,IMM-JPDA-PF).将IMM,JPDA和PF相结合,给出了两个传感器情况下的IMM-JPDA-PF算法,并且IMM-JPDA-PF()算法能够很容易地扩展到任意多个传感器的情况,在非线性非高斯条件下实现了杂波环境中利用多传感器对多机动目标的有效跟踪.仿真结果表明,多传感器IMM-JPDA-PF算法比单传感器的IMM-JPDA-PF算法具有更高的多机动目标跟踪精度.展开更多
多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数...多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数据关联-交互式多模型(Generalized Probability Data Association-Interacting Multiple Model, GPDA-IMM)算法,GPDA运算量小,IMM综合了无迹和容积卡尔曼滤波和粒子滤波多模型滤波的特点,且优化权重因子,达到了较好跟踪性能。最后,通过仿真平台模拟8个运动目标的现实场景,结合时间管理和目标跟踪调整回访率,进行大量的仿真实验,证明了算法对不同目标类型和机动状态的有效性和实用性。展开更多
针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关...针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关联模型思想提出一种JPDA算法,从而计算运动目标的当前有效量测的边缘关联概率,然后结合该边缘关联概率以概率数据关联( Probability Data Association, PDA )的方式分别更新每个扩展目标的运动参数和形状参数向量,最后通过仿真实现了当扩展目标相互靠近或出现交叉时的跟踪。实验结果表明,在高杂波环境下,本文所提出的算法在计算时间和跟踪稳定上具有较明显的优势。展开更多
文摘针对单传感器交互式多模型联合概率数据关联滤波算法(Interacting Multiple Model Joint Probabilistic Data Associa-tion Filtering,IMMJPDAF)在非线性情况下跟踪精度低,且对于非高斯问题不适用的情况,文中提出一种基于粒子滤波的多传感器交互式多模型多机动目标跟踪算法(Interacting Multiple Model Joint Probabilistic Data Association Particle Filtering,IMM-JPDA-PF).将IMM,JPDA和PF相结合,给出了两个传感器情况下的IMM-JPDA-PF算法,并且IMM-JPDA-PF()算法能够很容易地扩展到任意多个传感器的情况,在非线性非高斯条件下实现了杂波环境中利用多传感器对多机动目标的有效跟踪.仿真结果表明,多传感器IMM-JPDA-PF算法比单传感器的IMM-JPDA-PF算法具有更高的多机动目标跟踪精度.
文摘多功能相控阵雷达具有灵活性强、跟踪能力强的优势。为了提高相控阵雷达目标跟踪器精确度,进行相控阵雷达能量调节和任务执行的科学管理,通过合理调整机动目标和非机动目标的回访率,进而实现搜索、跟踪时间资源管理。设计了广义概率数据关联-交互式多模型(Generalized Probability Data Association-Interacting Multiple Model, GPDA-IMM)算法,GPDA运算量小,IMM综合了无迹和容积卡尔曼滤波和粒子滤波多模型滤波的特点,且优化权重因子,达到了较好跟踪性能。最后,通过仿真平台模拟8个运动目标的现实场景,结合时间管理和目标跟踪调整回访率,进行大量的仿真实验,证明了算法对不同目标类型和机动状态的有效性和实用性。
文摘针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关联模型思想提出一种JPDA算法,从而计算运动目标的当前有效量测的边缘关联概率,然后结合该边缘关联概率以概率数据关联( Probability Data Association, PDA )的方式分别更新每个扩展目标的运动参数和形状参数向量,最后通过仿真实现了当扩展目标相互靠近或出现交叉时的跟踪。实验结果表明,在高杂波环境下,本文所提出的算法在计算时间和跟踪稳定上具有较明显的优势。