期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于IMM-UKF方法的主动段目标分级与关机识别 被引量:1
1
作者 赵砚 张寅生 +1 位作者 张倩 易东云 《系统工程与电子技术》 EI CSCD 北大核心 2010年第10期2181-2185,共5页
主动段目标的分级与关机识别对于系统把握目标模型切换并部署后续跟踪具有重要意义。建立了主动段目标的分级和关机所涉及的两级主动段模型和中段模型;引入了交互式多模型框架以应对不确定模式下的跟踪问题,引入了无迹卡尔曼滤波以解决... 主动段目标的分级与关机识别对于系统把握目标模型切换并部署后续跟踪具有重要意义。建立了主动段目标的分级和关机所涉及的两级主动段模型和中段模型;引入了交互式多模型框架以应对不确定模式下的跟踪问题,引入了无迹卡尔曼滤波以解决非线性估计问题。在天基观测条件下进行了仿真实验,结果表明,利用模型概率和总体估计误差的异常变化,可有效识别主动段目标的分级和关机。 展开更多
关键词 主动段 分级与关机 加速度与速度之比 交互式多模模型 无迹卡尔曼滤波 天基观测
下载PDF
Quadratic investigation of geochemical distribution by backward elimination approach at Glojeh epithermal Au(Ag)-polymetallic mineralization, NW Iran
2
作者 Darabi-Golestan Farshad Hezarkhani Ardeshir 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期342-356,共15页
The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetal... The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetallic mineralization,NW Iran.This work proposes a backward elimination approach(BEA)that quantitatively predicts the Au concentration from main effects(X),quadratic terms(X2)and the first order interaction(Xi×Xj)of Ag,Cu,Pb,and Zn by initialization,order reduction and validation of model.BEA is done based on the quadratic model(QM),and it was eliminated to reduced quadratic model(RQM)by removing insignificant predictors.During the QM optimization process,overall convergence trend of R2,R2(adj)and R2(pred)is obvious,corresponding to increase in the R2(pred)and decrease of R2.The RQM consisted of(threshold value,Cu,Ag×Cu,Pb×Zn,and Ag2-Pb2)and(Pb,Ag×Cu,Ag×Pb,Cu×Zn,Pb×Zn,and Ag2)as main predictors of optimized model according to288and679litho-samples in trenches and boreholes,respectively.Due to the strong genetic effects with Au mineralization,Pb,Ag2,and Ag×Pb are important predictors in boreholes RQM,while the threshold value is known as an important predictor in the trenches model.The RQMs R2(pred)equal74.90%and60.62%which are verified by R2equal to73.9%and60.9%in the trenches and boreholes validation group,respectively. 展开更多
关键词 correspondence analysis first order interaction reduced quadratic model (RQM) optimized model order reduction and validation strong genetic effects
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部