为使交互式水域环卫机器人(Interactive Water Sanitation Vehicle,IWSV)在进行垃圾收集时成功捕获水中浮动垃圾并顺利规避水域障碍物,提出一种将基于采样的快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法与速度障碍模型相结...为使交互式水域环卫机器人(Interactive Water Sanitation Vehicle,IWSV)在进行垃圾收集时成功捕获水中浮动垃圾并顺利规避水域障碍物,提出一种将基于采样的快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法与速度障碍模型相结合的路径规划算法。利用双目摄像头基于视差定位法获取水域动态障碍物的位置坐标,利用IWSV搭载的感应元件获取其自身与障碍物的相对方位角,基于速度障碍法计算可成功避开障碍物的移动角度调整范围,对更优的RRT算法中的随机采样过程进行进一步优化,得到改进的避障路径规划算法。考虑实际应用场景,引入抗积分饱和比例积分微分控制(Proportional Integral Differentiational Control,PID Control)法使航向控制器的控制效果更为精准有效。在实景测试时避障路径规划算法存在稳健性,基于到达时间(Time of Arrival,TOA)定位法进行仿真分析。仿真试验结果表明,该路径规划算法比RRT算法和改进前的RRT算法路径规划效果更优,可靠性更好,可在较短时间内避障并得到较优移动路径。在实景测试时基于TOA的Chan算法更加符合定位估计需求,且IWSV本体感应装置的噪声测算宜在10 m以内。展开更多
文摘为使交互式水域环卫机器人(Interactive Water Sanitation Vehicle,IWSV)在进行垃圾收集时成功捕获水中浮动垃圾并顺利规避水域障碍物,提出一种将基于采样的快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法与速度障碍模型相结合的路径规划算法。利用双目摄像头基于视差定位法获取水域动态障碍物的位置坐标,利用IWSV搭载的感应元件获取其自身与障碍物的相对方位角,基于速度障碍法计算可成功避开障碍物的移动角度调整范围,对更优的RRT算法中的随机采样过程进行进一步优化,得到改进的避障路径规划算法。考虑实际应用场景,引入抗积分饱和比例积分微分控制(Proportional Integral Differentiational Control,PID Control)法使航向控制器的控制效果更为精准有效。在实景测试时避障路径规划算法存在稳健性,基于到达时间(Time of Arrival,TOA)定位法进行仿真分析。仿真试验结果表明,该路径规划算法比RRT算法和改进前的RRT算法路径规划效果更优,可靠性更好,可在较短时间内避障并得到较优移动路径。在实景测试时基于TOA的Chan算法更加符合定位估计需求,且IWSV本体感应装置的噪声测算宜在10 m以内。