期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于Ipad的移动课程的交互研究 被引量:4
1
作者 孙艺 《广州广播电视大学学报》 2013年第3期8-13,107,共6页
移动课程作为移动学习的重要资源,正逐步成为研究的热点。而Ipad作为一种新型的移动终端设备,在教育中的应用越来越广泛,基于Ipad的移动课程的交互研究也越来越受到重视。目前,基于Ipad的移动课程存在交互层次较浅、没有综合考虑Ipad的... 移动课程作为移动学习的重要资源,正逐步成为研究的热点。而Ipad作为一种新型的移动终端设备,在教育中的应用越来越广泛,基于Ipad的移动课程的交互研究也越来越受到重视。目前,基于Ipad的移动课程存在交互层次较浅、没有综合考虑Ipad的特点、忽略移动学习本质等问题。本文在文献研究和分析现有的基于Ipad的移动课程交互现状的基础上,总结现有的基于Ipad的移动课程交互优缺点和交互模型,通过借鉴现有的移动课程交互的优点,提出了基于Ipad的移动课程交互的新模型,以期望为今后的移动课程的设计者和开发者提供经验。 展开更多
关键词 基于Ipad的移动课程 交互现状 交互模型
下载PDF
基于ITTools的网络交互教学在高中信息技术课堂中的应用 被引量:1
2
作者 李秀钗 《福建电脑》 2018年第3期156-157,共2页
交互教学是新课程下的课堂教学改革中的一个重要环节,利用网络环境下进行交互教学是课堂互动的一种途径。本文就网络上丰富的资源及网络环境的优势,对于高中信息技术课程教学的互动的应用情况进行探究。
关键词 交互现状 存在问题 网络交互教学 ITtools 教学实践与应用
下载PDF
网络教学交互浅析 被引量:1
3
作者 吴立峰 《中国校外教育》 2007年第2期127-127,共1页
本文从不同的方面针对当前网络教学交互现状进行了分析,进而提出了一些解决交互质量差的建议。
关键词 网络教学 交互质量现状
下载PDF
ACP-based social computing and parallel intelligence: Societies 5.0 and beyond 被引量:21
4
作者 XiaoWang Lingxi Li +2 位作者 Yong Yuan Peijun Ye Fei-Yue Wang 《CAAI Transactions on Intelligence Technology》 2016年第4期377-393,共17页
Social computing, as the technical foundation of future computational smart societies, has the potential to improve the effectiveness of opensource big data usage, systematically integrate a variety of elements includ... Social computing, as the technical foundation of future computational smart societies, has the potential to improve the effectiveness of opensource big data usage, systematically integrate a variety of elements including time, human, resources, scenarios, and organizations in the current cyber-physical-social world, and establish a novel social structure with fair information, equal rights, and a flat configuration. Meanwhile, considering the big modeling gap between the model world and the physical world, the concept of parallel intelligence is introduced. With the help of software-defined everything, parallel intelligence bridges the big modeling gap by means of constructing artificial systems where computational experiments can be implemented to verify social policies, economic strategies, and even military operations. Artificial systems play the role of "social laboratories" in which decisions are computed before they are executed in our physical society. Afterwards, decisions with the expected outputs are executed in parallel in both the artificial and physical systems to interactively sense, compute, evaluate and adjust system behaviors in real-time, leading system behaviors in the physical system converging to those proven to be optimal in the artificial ones. Thus, the smart guidance and management for our society can be achieved. 展开更多
关键词 Social computing Societies 5.0 Parallel intelligence Knowledge automation Cyber-physical-social system Artificial societies Computational ex-periments Parallel execution
下载PDF
Relative attribute based incremental learning for image recognition 被引量:3
5
作者 Emrah Ergul 《CAAI Transactions on Intelligence Technology》 2017年第1期1-11,共11页
In this study, we propose an incremental learning approach based on a machine-machine interaction via relative attribute feedbacks that exploit comparative relationships among top level image categories. One machine a... In this study, we propose an incremental learning approach based on a machine-machine interaction via relative attribute feedbacks that exploit comparative relationships among top level image categories. One machine acts as 'Student (S)' with initially limited information and it endeavors to capture the task domain gradually by questioning its mentor on a pool of unlabeled data. The other machine is 'Teacher (T)' with the implicit knowledge for helping S on learning the class models. T initiates relative attributes as a communication channel by randomly sorting the classes on attribute space in an unsupervised manner. S starts modeling the categories in this intermediate level by using only a limited number of labeled data. Thereafter, it first selects an entropy-based sample from the pool of unlabeled data and triggers the conversation by propagating the selected image with its belief class in a query. Since T already knows the ground truth labels, it not only decides whether the belief is true or false, but it also provides an attribute-based feedback to S in each case without revealing the true label of the query sample if the belief is false. So the number of training data is increased virtually by dropping the falsely predicted sample back into the unlabeled pool. Next, S updates the attribute space which, in fact, has an impact on T's future responses, and then the category models are updated concurrently for the next run. We experience the weakly supervised algorithm on the real world datasets of faces and natural scenes in comparison with direct attribute prediction and semi-supervised learning approaches, and a noteworthy performance increase is achieved. 展开更多
关键词 Image classification Incremental learning Relative attribute Visual recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部