Social computing, as the technical foundation of future computational smart societies, has the potential to improve the effectiveness of opensource big data usage, systematically integrate a variety of elements includ...Social computing, as the technical foundation of future computational smart societies, has the potential to improve the effectiveness of opensource big data usage, systematically integrate a variety of elements including time, human, resources, scenarios, and organizations in the current cyber-physical-social world, and establish a novel social structure with fair information, equal rights, and a flat configuration. Meanwhile, considering the big modeling gap between the model world and the physical world, the concept of parallel intelligence is introduced. With the help of software-defined everything, parallel intelligence bridges the big modeling gap by means of constructing artificial systems where computational experiments can be implemented to verify social policies, economic strategies, and even military operations. Artificial systems play the role of "social laboratories" in which decisions are computed before they are executed in our physical society. Afterwards, decisions with the expected outputs are executed in parallel in both the artificial and physical systems to interactively sense, compute, evaluate and adjust system behaviors in real-time, leading system behaviors in the physical system converging to those proven to be optimal in the artificial ones. Thus, the smart guidance and management for our society can be achieved.展开更多
In this study, we propose an incremental learning approach based on a machine-machine interaction via relative attribute feedbacks that exploit comparative relationships among top level image categories. One machine a...In this study, we propose an incremental learning approach based on a machine-machine interaction via relative attribute feedbacks that exploit comparative relationships among top level image categories. One machine acts as 'Student (S)' with initially limited information and it endeavors to capture the task domain gradually by questioning its mentor on a pool of unlabeled data. The other machine is 'Teacher (T)' with the implicit knowledge for helping S on learning the class models. T initiates relative attributes as a communication channel by randomly sorting the classes on attribute space in an unsupervised manner. S starts modeling the categories in this intermediate level by using only a limited number of labeled data. Thereafter, it first selects an entropy-based sample from the pool of unlabeled data and triggers the conversation by propagating the selected image with its belief class in a query. Since T already knows the ground truth labels, it not only decides whether the belief is true or false, but it also provides an attribute-based feedback to S in each case without revealing the true label of the query sample if the belief is false. So the number of training data is increased virtually by dropping the falsely predicted sample back into the unlabeled pool. Next, S updates the attribute space which, in fact, has an impact on T's future responses, and then the category models are updated concurrently for the next run. We experience the weakly supervised algorithm on the real world datasets of faces and natural scenes in comparison with direct attribute prediction and semi-supervised learning approaches, and a noteworthy performance increase is achieved.展开更多
文摘Social computing, as the technical foundation of future computational smart societies, has the potential to improve the effectiveness of opensource big data usage, systematically integrate a variety of elements including time, human, resources, scenarios, and organizations in the current cyber-physical-social world, and establish a novel social structure with fair information, equal rights, and a flat configuration. Meanwhile, considering the big modeling gap between the model world and the physical world, the concept of parallel intelligence is introduced. With the help of software-defined everything, parallel intelligence bridges the big modeling gap by means of constructing artificial systems where computational experiments can be implemented to verify social policies, economic strategies, and even military operations. Artificial systems play the role of "social laboratories" in which decisions are computed before they are executed in our physical society. Afterwards, decisions with the expected outputs are executed in parallel in both the artificial and physical systems to interactively sense, compute, evaluate and adjust system behaviors in real-time, leading system behaviors in the physical system converging to those proven to be optimal in the artificial ones. Thus, the smart guidance and management for our society can be achieved.
文摘In this study, we propose an incremental learning approach based on a machine-machine interaction via relative attribute feedbacks that exploit comparative relationships among top level image categories. One machine acts as 'Student (S)' with initially limited information and it endeavors to capture the task domain gradually by questioning its mentor on a pool of unlabeled data. The other machine is 'Teacher (T)' with the implicit knowledge for helping S on learning the class models. T initiates relative attributes as a communication channel by randomly sorting the classes on attribute space in an unsupervised manner. S starts modeling the categories in this intermediate level by using only a limited number of labeled data. Thereafter, it first selects an entropy-based sample from the pool of unlabeled data and triggers the conversation by propagating the selected image with its belief class in a query. Since T already knows the ground truth labels, it not only decides whether the belief is true or false, but it also provides an attribute-based feedback to S in each case without revealing the true label of the query sample if the belief is false. So the number of training data is increased virtually by dropping the falsely predicted sample back into the unlabeled pool. Next, S updates the attribute space which, in fact, has an impact on T's future responses, and then the category models are updated concurrently for the next run. We experience the weakly supervised algorithm on the real world datasets of faces and natural scenes in comparison with direct attribute prediction and semi-supervised learning approaches, and a noteworthy performance increase is achieved.