A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
基金Supported by NSFC(12171376,2020-JCJQ-ZD-029)Natural Science Foundation of Hubei Province(2019CFA007)the Fundamental Research Funds for the Central Universities(2042021kf0050)。
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.