Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop...Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.展开更多
In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity...Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.展开更多
In order to improve the performance of the signalized intersection,an unconventional scheme tandem design(TD)is proposed.A simulation experiment is conducted to evaluate the capacity and delay under the unconventional...In order to improve the performance of the signalized intersection,an unconventional scheme tandem design(TD)is proposed.A simulation experiment is conducted to evaluate the capacity and delay under the unconventional scheme and two conventional lane assignment schemes.First,the VISSIM is employed as microsimulation to obtain the delay of different designs at signalized T-intersections under different conditions of traffic flow and turning proportion.Secondly,a method based on discriminant analysis(DA)is proposed to determine the best design scheme using the flow and turning proportion as inputs.Finally,a case study in Changsha city,China is used to demonstrate the efficiency and accuracy of these findings.The results indicate that the traffic flow and turning proportion are the crucial factors in scheme selection of lane assignment.Different from the previous research,the TD has better performance over various traffic flow levels.Furthermore,a proper proportion of left turns makes TD an outstanding option,which can reduce the delay and decrease the average number of stops and queue length significantly.However,the proportion should not be too high or too low.The research results can help practitioners obtain a quantitative view of appropriate design schemes at signalized intersections when trying to relieve traffic congestion according to different traffic conditions.展开更多
文摘Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.
基金Supported by the National Natural Science Foundation of China(50478071)
文摘Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.
文摘In order to improve the performance of the signalized intersection,an unconventional scheme tandem design(TD)is proposed.A simulation experiment is conducted to evaluate the capacity and delay under the unconventional scheme and two conventional lane assignment schemes.First,the VISSIM is employed as microsimulation to obtain the delay of different designs at signalized T-intersections under different conditions of traffic flow and turning proportion.Secondly,a method based on discriminant analysis(DA)is proposed to determine the best design scheme using the flow and turning proportion as inputs.Finally,a case study in Changsha city,China is used to demonstrate the efficiency and accuracy of these findings.The results indicate that the traffic flow and turning proportion are the crucial factors in scheme selection of lane assignment.Different from the previous research,the TD has better performance over various traffic flow levels.Furthermore,a proper proportion of left turns makes TD an outstanding option,which can reduce the delay and decrease the average number of stops and queue length significantly.However,the proportion should not be too high or too low.The research results can help practitioners obtain a quantitative view of appropriate design schemes at signalized intersections when trying to relieve traffic congestion according to different traffic conditions.