This paper proposes to use substrate materials of small electromechanical coupling coefficient k2 (such as X-112YLiTaO3) to manufacture wavelet transform element of SAW type so as to reduce finger reflections, i.e. to...This paper proposes to use substrate materials of small electromechanical coupling coefficient k2 (such as X-112YLiTaO3) to manufacture wavelet transform element of SAW type so as to reduce finger reflections, i.e. to reduce the error of wavelet transform element of SAW type. And it is concluded that the smaller the center frequency of the transmitting IDT of wavelet type, the smaller the error. We suggest to choose substrate material with electromechanica coupling coefficient smaller than that of X-112Y LiTaO3 in the manufacture of the transmitting IDTs of wavelet type and the receiving IDTs at center frequencies above 100MHZ, so as to reduce the errors of the transmitting IDTs of wavelet type and the receiving IDTs at center frequencies above 100MHZ.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.60176020 and 60476037)863 Project of China(No.2001AA313090)the Doctor Foundation of Education Ministry of China(No.20020698014).
文摘This paper proposes to use substrate materials of small electromechanical coupling coefficient k2 (such as X-112YLiTaO3) to manufacture wavelet transform element of SAW type so as to reduce finger reflections, i.e. to reduce the error of wavelet transform element of SAW type. And it is concluded that the smaller the center frequency of the transmitting IDT of wavelet type, the smaller the error. We suggest to choose substrate material with electromechanica coupling coefficient smaller than that of X-112Y LiTaO3 in the manufacture of the transmitting IDTs of wavelet type and the receiving IDTs at center frequencies above 100MHZ, so as to reduce the errors of the transmitting IDTs of wavelet type and the receiving IDTs at center frequencies above 100MHZ.