Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is graduall...Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management.展开更多
As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model b...As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system.展开更多
A new wavelength reservation scheme is proposed the reconfiguration times of optical cross-connects (OXCs) for we consider the reconfiguration information of switch fabrics to mitigate the connection setup time and ...A new wavelength reservation scheme is proposed the reconfiguration times of optical cross-connects (OXCs) for we consider the reconfiguration information of switch fabrics to mitigate the connection setup time and minimize WDM optical networks in this study. In this scheme, in the signaling protocol, which is designated as the signaling with switch fabric status (SWFS). Distributed reservation algorithms will reserve the wavelength with minimum of reconfiguration times of OXCs along the route. Simulation results indicate that the proposed schemes with switch fabrics status have shorter setup time, lower switching ratio as well as better blocking performance than those of the traditional classic schemes. Moreover, the proposed schemes with SWFS significantly reduce the number of switch fabrics that need to be reconfigured.展开更多
基金Project(52161135301)supported by the International Cooperation and Exchange of the National Natural Science Foundation of ChinaProject(202306370296)supported by China Scholarship Council。
文摘Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management.
基金supported by the National Natural Science Foundation of China(No.71971114)。
文摘As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system.
基金the National Natural Science Foundation of China (Nos. 60632010 and 60572029)the National High Technology Research and Development Program (863) of China (No. 2006AA01Z251)
文摘A new wavelength reservation scheme is proposed the reconfiguration times of optical cross-connects (OXCs) for we consider the reconfiguration information of switch fabrics to mitigate the connection setup time and minimize WDM optical networks in this study. In this scheme, in the signaling protocol, which is designated as the signaling with switch fabric status (SWFS). Distributed reservation algorithms will reserve the wavelength with minimum of reconfiguration times of OXCs along the route. Simulation results indicate that the proposed schemes with switch fabrics status have shorter setup time, lower switching ratio as well as better blocking performance than those of the traditional classic schemes. Moreover, the proposed schemes with SWFS significantly reduce the number of switch fabrics that need to be reconfigured.