The reaction of chlorine atom Cl(2P)(Cl(2P3/2)and Cl^*(2P1/2))with D2 was investigated at collision energy from 4.5 kcal/mol to 6.5 kcal/mol with a high-resolution crossed molecular beam apparatus using the technique ...The reaction of chlorine atom Cl(2P)(Cl(2P3/2)and Cl^*(2P1/2))with D2 was investigated at collision energy from 4.5 kcal/mol to 6.5 kcal/mol with a high-resolution crossed molecular beam apparatus using the technique of D-atom Rydberg tagging detection.The contribution from the spin-orbit excited reaction Cl^*(2P1/2)+D2,which is prohibited by Born-Oppenheimer(BO)approximation,was observed.Collision-energy dependence of differential cross sections(DCSs)near the backward scattering direction was measured.The BOforbidden reaction Cl^*+D2 was found to be dominant at lower collision energy.As collision energy increases,reactivity of BO-allowed reaction Cl+D2 increases much faster than that of BO-forbidden reaction and becomes dominant at higher collision energy.Our experiment indicates that the additional energy of spin-orbit excitation in Cl^*facilitates BO-forbidden reaction to pass through the barrier at lower collision energy,while BO approximation is still valid at collision energy near and above the reaction barrier.This tendency of reactivity of Cl/Cl^*+D2 is similar to the isotopic reaction of Cl/Cl^*+H2.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB17000000)the National Natural Science Foundation of China (No.21573226,No.21822305,No.21688102).
文摘The reaction of chlorine atom Cl(2P)(Cl(2P3/2)and Cl^*(2P1/2))with D2 was investigated at collision energy from 4.5 kcal/mol to 6.5 kcal/mol with a high-resolution crossed molecular beam apparatus using the technique of D-atom Rydberg tagging detection.The contribution from the spin-orbit excited reaction Cl^*(2P1/2)+D2,which is prohibited by Born-Oppenheimer(BO)approximation,was observed.Collision-energy dependence of differential cross sections(DCSs)near the backward scattering direction was measured.The BOforbidden reaction Cl^*+D2 was found to be dominant at lower collision energy.As collision energy increases,reactivity of BO-allowed reaction Cl+D2 increases much faster than that of BO-forbidden reaction and becomes dominant at higher collision energy.Our experiment indicates that the additional energy of spin-orbit excitation in Cl^*facilitates BO-forbidden reaction to pass through the barrier at lower collision energy,while BO approximation is still valid at collision energy near and above the reaction barrier.This tendency of reactivity of Cl/Cl^*+D2 is similar to the isotopic reaction of Cl/Cl^*+H2.