利用跨学科测度指标,对ISI Web of Knowledge数据库中收录的生物传感器等8个领域的无合作文章、国内合作文章和国际合作文章的跨学科指标进行了深入的计算、比较和分析;研究表明,跨学科指标仅与该领域的特点有关,而与领域文章的不同合...利用跨学科测度指标,对ISI Web of Knowledge数据库中收录的生物传感器等8个领域的无合作文章、国内合作文章和国际合作文章的跨学科指标进行了深入的计算、比较和分析;研究表明,跨学科指标仅与该领域的特点有关,而与领域文章的不同合作类型关系不大,科研论文合作在跨学科研究中的影响不明显。展开更多
In response to the high requirements of industrial precision test, presenting a method of testing relative relation of space points was studied. The spatial-coordinate testing system was established by using high prec...In response to the high requirements of industrial precision test, presenting a method of testing relative relation of space points was studied. The spatial-coordinate testing system was established by using high precision theodolites and horizontal staff. The related test was conducted with the use of the space intersection and the precision was evaluated based on the error of baseline. In the practical application of radar-development base, the relative relation of space points was implemented by using electronic theodolite and horizontal staff, which can be easily operated. Furthermore, it can be conveniently used to test small areas where the instruments are difficult to be installed and for high industrial requirements of precision test. The test results can fully meet the strict industrial requirements.展开更多
In this work, the theoretical model of FBG when it is affected by double external variables (temperature and transverse pressure) and triple external variables (temperature, axial strain and transverse pressure) is de...In this work, the theoretical model of FBG when it is affected by double external variables (temperature and transverse pressure) and triple external variables (temperature, axial strain and transverse pressure) is deduced, respectively. The simulated results show that the properties of cross sensitivity would change in a certain regulation with the external effects and fiber parameters. At the same time, some valuable suggestions about how to improve the measurement accuracy are put forward as well.展开更多
According to the cross coupling theorem of atmospheric turbulence, latent heat flux comprises two components, a vertical humidity gradient flux and a coupling flux of vertical velocity. In this paper, observational da...According to the cross coupling theorem of atmospheric turbulence, latent heat flux comprises two components, a vertical humidity gradient flux and a coupling flux of vertical velocity. In this paper, observational data are employed to demonstrate and analyze the coupling effect of vertical velocity on latent heat flux. The results highlight the presence of a coupling zero-effect height. When the observational level exceeds or underlies the coupling zero-effect height, the coupling effect suppresses or enhances the latent heat flux, respectively. Above the heterogeneous terrain in the experimental region, the overall difference between the estimated and the observed latent heat fluxes decreases from 27% to 2% (for ascending flow) and from 47% to 28% (for descending flow), after compensating for gradient flux. The coupling theorem of atmospheric turbulence is well validated by our analysis, supporting a role for experimental datasets in unraveling the mysteries of atmospheric turbulence.展开更多
文摘In response to the high requirements of industrial precision test, presenting a method of testing relative relation of space points was studied. The spatial-coordinate testing system was established by using high precision theodolites and horizontal staff. The related test was conducted with the use of the space intersection and the precision was evaluated based on the error of baseline. In the practical application of radar-development base, the relative relation of space points was implemented by using electronic theodolite and horizontal staff, which can be easily operated. Furthermore, it can be conveniently used to test small areas where the instruments are difficult to be installed and for high industrial requirements of precision test. The test results can fully meet the strict industrial requirements.
基金supported by the National Natural Science Foundation of China (No.50876120)the Natural Science Foundation Project of Chongqing, China (No.2010BB2298)
文摘In this work, the theoretical model of FBG when it is affected by double external variables (temperature and transverse pressure) and triple external variables (temperature, axial strain and transverse pressure) is deduced, respectively. The simulated results show that the properties of cross sensitivity would change in a certain regulation with the external effects and fiber parameters. At the same time, some valuable suggestions about how to improve the measurement accuracy are put forward as well.
基金supported by National Natural Science Foundation of China(Grant Nos. 40705007, 1141130961 & 91025011)the Hundred-Talent Project of Chinese Academy of Sciences granted to Dr. YU.
文摘According to the cross coupling theorem of atmospheric turbulence, latent heat flux comprises two components, a vertical humidity gradient flux and a coupling flux of vertical velocity. In this paper, observational data are employed to demonstrate and analyze the coupling effect of vertical velocity on latent heat flux. The results highlight the presence of a coupling zero-effect height. When the observational level exceeds or underlies the coupling zero-effect height, the coupling effect suppresses or enhances the latent heat flux, respectively. Above the heterogeneous terrain in the experimental region, the overall difference between the estimated and the observed latent heat fluxes decreases from 27% to 2% (for ascending flow) and from 47% to 28% (for descending flow), after compensating for gradient flux. The coupling theorem of atmospheric turbulence is well validated by our analysis, supporting a role for experimental datasets in unraveling the mysteries of atmospheric turbulence.