对于五相永磁电机最大转矩电流比(maximum torque per ampere,MTPA)控制系统,由于电机交叉耦合及饱和效应的存在,极大影响MTPA控制精度,无法满足其用于电动汽车领域的多工况运行需求.针对此问题,本文从电机驱动系统的角度,提出一种新的...对于五相永磁电机最大转矩电流比(maximum torque per ampere,MTPA)控制系统,由于电机交叉耦合及饱和效应的存在,极大影响MTPA控制精度,无法满足其用于电动汽车领域的多工况运行需求.针对此问题,本文从电机驱动系统的角度,提出一种新的主动式MTPA策略.在电机设计阶段,提前考虑基于虚拟信号注入的MTPA(MTPA based on virtual signal injection,VSI-MTPA)控制精度,提出一种反凸极效应增强的五相磁场增强型内置式永磁容错(flux-intensifying fault-tolerant interior permanent magnet,FIFT-IPM)电机,以抑制交叉耦合及饱和效应对MTPA点追踪精度的影响;同时从控制算法的角度,针对五相FIFT-IPM电机的反凸极特性,提出相应的高精度VSI-MTPA控制策略,进一步提升五相FIFT-IPM电机MTPA控制驱动系统的动稳态性能.最后,搭建电机驱动系统实验平台,验证所提策略的可行性和有效性.展开更多
文摘对于五相永磁电机最大转矩电流比(maximum torque per ampere,MTPA)控制系统,由于电机交叉耦合及饱和效应的存在,极大影响MTPA控制精度,无法满足其用于电动汽车领域的多工况运行需求.针对此问题,本文从电机驱动系统的角度,提出一种新的主动式MTPA策略.在电机设计阶段,提前考虑基于虚拟信号注入的MTPA(MTPA based on virtual signal injection,VSI-MTPA)控制精度,提出一种反凸极效应增强的五相磁场增强型内置式永磁容错(flux-intensifying fault-tolerant interior permanent magnet,FIFT-IPM)电机,以抑制交叉耦合及饱和效应对MTPA点追踪精度的影响;同时从控制算法的角度,针对五相FIFT-IPM电机的反凸极特性,提出相应的高精度VSI-MTPA控制策略,进一步提升五相FIFT-IPM电机MTPA控制驱动系统的动稳态性能.最后,搭建电机驱动系统实验平台,验证所提策略的可行性和有效性.