期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融入交叉注意力编码的皮肤病变分割网络
1
作者 李大湘 杨福杰 +1 位作者 刘颖 唐垚 《光学精密工程》 EI CAS CSCD 北大核心 2024年第4期609-621,共13页
由于卷积操作的局限性,现有的皮肤病变图像分割网络无法对图像中的全局上下文信息建模,导致其无法有效捕获图像的目标结构信息,本文设计了一个融入交叉自注意力编码的U型混合网络,用于皮肤病变图像分割。首先,将设计的多头门控位置交叉... 由于卷积操作的局限性,现有的皮肤病变图像分割网络无法对图像中的全局上下文信息建模,导致其无法有效捕获图像的目标结构信息,本文设计了一个融入交叉自注意力编码的U型混合网络,用于皮肤病变图像分割。首先,将设计的多头门控位置交叉自注意力编码器引入到U型网络的最后两个层级中,使其能够在图像中学习语义信息的长期依赖关系,弥补卷积操作全局建模能力的不足;其次,在跳跃连接部分引入一个新的位置通道注意力机制,用于编码融合特征的通道信息并保留位置信息,提高网络捕获目标结构的能力;最后,设计一个正则化Dice损失函数,使网络能够在假阳性和假阴性之间权衡,提高网络的分割结果。基于ISBI2017和ISIC2018数据集的对比实验结果表明,本文网络的Dice分别为91.48%和91.30%,IoU分别为84.42%和84.12%,分割精度在整体上优于其他网络,且具有较低的参数量和计算复杂度,即本文网络能够高效地分割皮肤病变图像的目标区域,可为皮肤疾病辅助诊断提供帮助。 展开更多
关键词 医学图像分割 皮肤病变 交叉自注意力编码 位置通道注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部