In order to develop an anti-FMDV A Type monoclonal antibody (mAb), BABL/c mice were immunized with FMDV A type. Monoclonal antibodies (mAbs) 7B 11 and 8H4 against Foot-and-mouth disease virus (FMDV) serotype A w...In order to develop an anti-FMDV A Type monoclonal antibody (mAb), BABL/c mice were immunized with FMDV A type. Monoclonal antibodies (mAbs) 7B 11 and 8H4 against Foot-and-mouth disease virus (FMDV) serotype A were produced by fusing SP2/0 myeloma cells with splenocyte from the mouse immunized with A/AV88. The microneutralization titer of the mAbs 7Bll and 8H4 were 1024 and 512, respectively. Both mAbs contain kappa light chainS, the mAbs were IgG1. In order to define the mAbs binding epitopes, the reactivity of these mAbs against A Type FMDV, were examined using indirect ELISA, the result showed that both mAbs reacted with A Type FMDV. These mAbs may be used for further vaccine studies, diagnostic methods, prophylaxis, etiological and immunological research on FMDV. Characterization of these ncindicated that prepared anti-FMDV A mAbs had no cross-reactivity with Swine Vesicular Disease (SVD) or FMDV O, Asial and C Type antigens. Their titers in abdomen liquor were 1:5×10^6 and 1:2×10^6, respectively. 7B 11 was found to be of subtype IgGb 8H4 was classified as IgG2b subtype. The mAbs prepared in this study, are specific for detection of FMDV serotype A, and is potentially useful for pen-side diagnosis.展开更多
Within the Born-Oppenheimer(BO)approximation,nuclear motions of a molecule are often envisioned to occur on an adiabatic potential energy surface(PES).However,this single PES picture should be reconsidered if a conica...Within the Born-Oppenheimer(BO)approximation,nuclear motions of a molecule are often envisioned to occur on an adiabatic potential energy surface(PES).However,this single PES picture should be reconsidered if a conical intersection(CI)is present,although the energy is well below the CI.The presence of the CI results in two additional terms in the nuclear Hamiltonian in the adiabatic presentation,i.e.,the diagonal BO correction(DBOC)and the geometric phase(GP),which are divergent at the CI.At the same time,there are cusps in the adiabatic PESs.Thus usually it is regarded that there is numerical difficulty in a quantum dynamics calculation for treating CI in the adiabatic representation.A popular numerical method in nuclear quantum dynamics calculations is the Sinc discrete variable representation(DVR)method.We examine the numerical accuracy of the Sinc DVR method for solving the Schrodinger equation of a two dimensional model of two electronic states with a CI in both the adiabatic and diabatic representation.The results suggest that the Sinc DVR method is capable of giving reliable results in the adiabatic representation with usual density of the grid points,without special treatment of the divergence of the DBOC and the GP.The numerical uncertainty is not worse than that after the introduction of an arbitrary vector potential for accounting the GP,whose accurate form usually is not easy to obtain.展开更多
基金State Key Projects of Transgene Program(2011ZX08011-0042009ZX 08007- 008B2009ZX08006-002B)
文摘In order to develop an anti-FMDV A Type monoclonal antibody (mAb), BABL/c mice were immunized with FMDV A type. Monoclonal antibodies (mAbs) 7B 11 and 8H4 against Foot-and-mouth disease virus (FMDV) serotype A were produced by fusing SP2/0 myeloma cells with splenocyte from the mouse immunized with A/AV88. The microneutralization titer of the mAbs 7Bll and 8H4 were 1024 and 512, respectively. Both mAbs contain kappa light chainS, the mAbs were IgG1. In order to define the mAbs binding epitopes, the reactivity of these mAbs against A Type FMDV, were examined using indirect ELISA, the result showed that both mAbs reacted with A Type FMDV. These mAbs may be used for further vaccine studies, diagnostic methods, prophylaxis, etiological and immunological research on FMDV. Characterization of these ncindicated that prepared anti-FMDV A mAbs had no cross-reactivity with Swine Vesicular Disease (SVD) or FMDV O, Asial and C Type antigens. Their titers in abdomen liquor were 1:5×10^6 and 1:2×10^6, respectively. 7B 11 was found to be of subtype IgGb 8H4 was classified as IgG2b subtype. The mAbs prepared in this study, are specific for detection of FMDV serotype A, and is potentially useful for pen-side diagnosis.
基金was supported by the National Natural Science Foundation of China(No.21733006 and No.21825303)NSFC Center for Chemical Dynamics(No.21688102)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB17000000)the Chinese Academy of Sciences,and the Key Research Program of the Chinese Academy of Sciences
文摘Within the Born-Oppenheimer(BO)approximation,nuclear motions of a molecule are often envisioned to occur on an adiabatic potential energy surface(PES).However,this single PES picture should be reconsidered if a conical intersection(CI)is present,although the energy is well below the CI.The presence of the CI results in two additional terms in the nuclear Hamiltonian in the adiabatic presentation,i.e.,the diagonal BO correction(DBOC)and the geometric phase(GP),which are divergent at the CI.At the same time,there are cusps in the adiabatic PESs.Thus usually it is regarded that there is numerical difficulty in a quantum dynamics calculation for treating CI in the adiabatic representation.A popular numerical method in nuclear quantum dynamics calculations is the Sinc discrete variable representation(DVR)method.We examine the numerical accuracy of the Sinc DVR method for solving the Schrodinger equation of a two dimensional model of two electronic states with a CI in both the adiabatic and diabatic representation.The results suggest that the Sinc DVR method is capable of giving reliable results in the adiabatic representation with usual density of the grid points,without special treatment of the divergence of the DBOC and the GP.The numerical uncertainty is not worse than that after the introduction of an arbitrary vector potential for accounting the GP,whose accurate form usually is not easy to obtain.