径向基函数(Radial Basis Function,RBF)是一种确定性的多维空间插值模型,可以有效逼近任意维度的空间数据。RBF插值模型中,基函数形态参数直接影响插值精度。为了快速求解最佳形态参数,获取准确的插值结果,该文采用改进的逐点交叉验证(...径向基函数(Radial Basis Function,RBF)是一种确定性的多维空间插值模型,可以有效逼近任意维度的空间数据。RBF插值模型中,基函数形态参数直接影响插值精度。为了快速求解最佳形态参数,获取准确的插值结果,该文采用改进的逐点交叉验证(Improved Leave One Out Cross Validation,ILOOCV)方法求取最优形态参数,首先从形态参数取值区间内选定初始形态参数α,然后从n个已知点中顺序选出一个点,使用剩下的n-1个已知点构建RBF插值模型,计算被取出点处真实值与插值结果的误差,循环n次,累计交叉验证误差,再依次从形态参数取值区间选取下一个值,重复操作,建立形态参数α与累计交叉验证误差之间的函数映射关系,最后通过最小化交叉验证误差来获取最佳形态参数。以我国东北地区气象观测数据进行实验,对ILOOCV方法进行验证,结果表明ILOOCV方法选取最佳形态参数使其插值结果比较精确,是一种可行的RBF形态参数优化方法。展开更多
叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI...叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI)及三边变量参数等高光谱变量;将上述参数与小麦LAI数据进行相关性分析,并利用交叉验证法进行多种回归分析,确定反演小麦LAI的敏感参数,选择反演模型;最后使用敏感参数构建所有样本的小麦LAI反演模型,并比较其拟合效果。研究结果表明:经过交叉验证的反演建模,其拟合结果的均方根误差(RMSE)整体上较未经交叉验证反演建模结果的RMSE小;在用敏感参数构建的回归模型中,RVI立方回归模型是用遥感数据反演小麦LAI的最优模型。展开更多
文摘径向基函数(Radial Basis Function,RBF)是一种确定性的多维空间插值模型,可以有效逼近任意维度的空间数据。RBF插值模型中,基函数形态参数直接影响插值精度。为了快速求解最佳形态参数,获取准确的插值结果,该文采用改进的逐点交叉验证(Improved Leave One Out Cross Validation,ILOOCV)方法求取最优形态参数,首先从形态参数取值区间内选定初始形态参数α,然后从n个已知点中顺序选出一个点,使用剩下的n-1个已知点构建RBF插值模型,计算被取出点处真实值与插值结果的误差,循环n次,累计交叉验证误差,再依次从形态参数取值区间选取下一个值,重复操作,建立形态参数α与累计交叉验证误差之间的函数映射关系,最后通过最小化交叉验证误差来获取最佳形态参数。以我国东北地区气象观测数据进行实验,对ILOOCV方法进行验证,结果表明ILOOCV方法选取最佳形态参数使其插值结果比较精确,是一种可行的RBF形态参数优化方法。
文摘叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI)及三边变量参数等高光谱变量;将上述参数与小麦LAI数据进行相关性分析,并利用交叉验证法进行多种回归分析,确定反演小麦LAI的敏感参数,选择反演模型;最后使用敏感参数构建所有样本的小麦LAI反演模型,并比较其拟合效果。研究结果表明:经过交叉验证的反演建模,其拟合结果的均方根误差(RMSE)整体上较未经交叉验证反演建模结果的RMSE小;在用敏感参数构建的回归模型中,RVI立方回归模型是用遥感数据反演小麦LAI的最优模型。