There are two states of methane existing in coal, free methane and adsorptive methane. The two states of methane exchanged with each other which need the energy exchange with outside. It is released heat when methane ...There are two states of methane existing in coal, free methane and adsorptive methane. The two states of methane exchanged with each other which need the energy exchange with outside. It is released heat when methane adsorption on coal, instead of absorbed heat. According to the gas molecules Boltzmann energy distribution, is obtained the equilibrium equations of the two states of methane in coal, as well as the heat of adsorption equation when exchanged into each other. At the same time, high temperature experiments of methane adsorption on coal have been certificated to the theoretical model. At last the experimental results presented that: the two-state energy model could be accurately described the distribution of the two states of methane in the coal; the adsorption heat is related to the initial equilibrium state of methane adsorption; the adsorption heats are different with different coal ranks.展开更多
We propose a scheme for controlled entanglement swapping of continuous variable, where an EPR pair shared by two parties (Alice and Debbie) and a GHZ entangled state shared by three parties (Alice, Bob and Claire)...We propose a scheme for controlled entanglement swapping of continuous variable, where an EPR pair shared by two parties (Alice and Debbie) and a GHZ entangled state shared by three parties (Alice, Bob and Claire) are required. One optical beams of the EPR state will be entangled with the output mode displaced by Bob with the help of Claire. It is shown that the entanglement swapping can occur controlled by the third party (Claire)展开更多
State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be ...State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be formulated into a mixed integer nonlinear programming (MINLP) model. In this article, a generalized state space model based on typical MEN is established and verified in two cases. A new asymmetrical operator and cost index are also adopted to speed up the solution process. The results demonstrate the efficiency of the proposed approach.展开更多
We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are enterin...We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. To keep the total number of vehicles constant, we subtract on the main road far from the intersection, the same number of cars as were added at the intersection. In addition to checking different densities we check also the influence of changes in the number of cars which were added. We calculate the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. We obtained different results for different cases. All the cases can be written as 1/fa .展开更多
The influence of white and color noise on the outcome of the entanglement swapping process is investigated in a four-qubit system. Critical degree of noise in initial state, that could destroy entanglement in a result...The influence of white and color noise on the outcome of the entanglement swapping process is investigated in a four-qubit system. Critical degree of noise in initial state, that could destroy entanglement in a result state is presented. The entanglement characteristics, such as concurrence, tangle, etc. are compared. Results could be helpful for experiments regarding entanglement swapping as conditions for initial quantum entangled states, to obtain entangled result state.展开更多
Using the highly entangled six-qubit genuine state we present a quantum private comparison(QPC)protocol, which enables two users to compare the equality of two bits of their secrets in every round comparison with the ...Using the highly entangled six-qubit genuine state we present a quantum private comparison(QPC)protocol, which enables two users to compare the equality of two bits of their secrets in every round comparison with the assistance of a semi-honest third party(TP). The proposed protocol needs neither unitary operations nor quantum entanglement swapping technology, both of which may consume expensive quantum devices. Single particle measurements and Bell-basis measurements, which are easy to implement with current technologies, are employed by two users and TP in the proposed protocol, respectively. The proposed protocol can withstand all kinds of outside attacks and participant attacks. Moreover, none of information about the two users' private secrets and the comparison result is leaked out to TP.展开更多
Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonst...Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.展开更多
Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange op...Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.展开更多
We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely,the Heitler-London(HL) and the Hund-Mulliken(HM) approximations, which use linear combinat...We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely,the Heitler-London(HL) and the Hund-Mulliken(HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr ¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecularorbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.展开更多
基金Supported by the National Natural Science Foundation of China (21373146)
文摘There are two states of methane existing in coal, free methane and adsorptive methane. The two states of methane exchanged with each other which need the energy exchange with outside. It is released heat when methane adsorption on coal, instead of absorbed heat. According to the gas molecules Boltzmann energy distribution, is obtained the equilibrium equations of the two states of methane in coal, as well as the heat of adsorption equation when exchanged into each other. At the same time, high temperature experiments of methane adsorption on coal have been certificated to the theoretical model. At last the experimental results presented that: the two-state energy model could be accurately described the distribution of the two states of methane in the coal; the adsorption heat is related to the initial equilibrium state of methane adsorption; the adsorption heats are different with different coal ranks.
基金The project supported by National Natural Science Foundation of China(NSFC)under Grant Nos.60678022 and 10704001the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060357008+2 种基金Natural Science Foundation of Anhui Province under Grant No.070412060the Key Program of the Education Department of Anhui Province under Grant No.2006KJ070Athe Talent Foundation of Anhui University,and Anhui Key Laboratory of Information Materials and Devices(Anhui University)
文摘We propose a scheme for controlled entanglement swapping of continuous variable, where an EPR pair shared by two parties (Alice and Debbie) and a GHZ entangled state shared by three parties (Alice, Bob and Claire) are required. One optical beams of the EPR state will be entangled with the output mode displaced by Bob with the help of Claire. It is shown that the entanglement swapping can occur controlled by the third party (Claire)
基金Supported by the National Natural Science Foundation of China (NSF 29836140).
文摘State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be formulated into a mixed integer nonlinear programming (MINLP) model. In this article, a generalized state space model based on typical MEN is established and verified in two cases. A new asymmetrical operator and cost index are also adopted to speed up the solution process. The results demonstrate the efficiency of the proposed approach.
文摘We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. To keep the total number of vehicles constant, we subtract on the main road far from the intersection, the same number of cars as were added at the intersection. In addition to checking different densities we check also the influence of changes in the number of cars which were added. We calculate the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. We obtained different results for different cases. All the cases can be written as 1/fa .
文摘The influence of white and color noise on the outcome of the entanglement swapping process is investigated in a four-qubit system. Critical degree of noise in initial state, that could destroy entanglement in a result state is presented. The entanglement characteristics, such as concurrence, tangle, etc. are compared. Results could be helpful for experiments regarding entanglement swapping as conditions for initial quantum entangled states, to obtain entangled result state.
基金Supported by National Natural Science Foundation of China under Grant No.61402407
文摘Using the highly entangled six-qubit genuine state we present a quantum private comparison(QPC)protocol, which enables two users to compare the equality of two bits of their secrets in every round comparison with the assistance of a semi-honest third party(TP). The proposed protocol needs neither unitary operations nor quantum entanglement swapping technology, both of which may consume expensive quantum devices. Single particle measurements and Bell-basis measurements, which are easy to implement with current technologies, are employed by two users and TP in the proposed protocol, respectively. The proposed protocol can withstand all kinds of outside attacks and participant attacks. Moreover, none of information about the two users' private secrets and the comparison result is leaked out to TP.
基金supported by the National Natural Science Foundation of China(Grant Nos.10832010,11002138 and 11102027)the Innovation Project of CAS(Grant No.KJCX2-YW-L05)
文摘Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.
基金supported by the National Key Basic Research Program of China(Grant Nos.2014CB848700,and 2013CB921800)
文摘Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region of China(Grant No.City U 21300116)the National Natural Science Foundation of China(Grant No.11604277)the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06D348)
文摘We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely,the Heitler-London(HL) and the Hund-Mulliken(HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr ¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecularorbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.