A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data e...A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data exhibits a power law decay as a whole characterized by 1/f^β processes with possible long range correlations. Subsequently, by using the method of detrended fluctuation analysis (DFA) of the general volatility in the stock markets, we find that the long-range correlations are occurred among the return series and the crossover phenomena exhibit in the results obviously.Further, Shanghai stock market shows long-range correlations in short time scale and shows short-range correlations in long time scale. Whereas, for Japan stock market, the data behaves oppositely absolutely. Last, we compare the varying of scale exponent in large volatility between two stock markets. All results obtained may indicate the possibility of characteristic of multifractal scaling behavior of the financial markets.展开更多
Decision-making of investors at the stock exchange can be based on the fundamental indicators of stocks, on the technical indicators, or can exist as a combination of these two methods. The paper gives emphasis to the...Decision-making of investors at the stock exchange can be based on the fundamental indicators of stocks, on the technical indicators, or can exist as a combination of these two methods. The paper gives emphasis to the domain of technical analysis. In the broader sense the technical analysis enables the dynamics of the expected future values of the shares estimation. This can be performed on the basis of the data on historical trends of the revenues, profits and other indicators from the balance sheet, but also on the basis of historical data on changes in the values of the shares. Companies generally belong to the different sectors that have different presumptions of development resulting from the global market trends, technology and other characteristic. Processing of historical data values of the outstanding shares of the Zagreb Stock Exchange (ZSE) is origination of this research. Investors are interested to know the estimation of future returns for the stocks as well as the size of the risk associated with the expected returns. Research task in this paper is finding the optimal portfolio at the ZSE based on the concept of dominant portfolio by Markowitz approach. The portfolio is created by solving non-linear programming problem using the common software tools. The results of obtained optimal portfolios contain relevant conclusions about the specifics of the shares as well as the characteristics of the industrial sectors but also provide a further knowledge about diverse sectors treatment at the stock exchange in a multi-year period.展开更多
The dynamic conditional correlation(DCC) model has been widely used for modeling the conditional correlation of multivariate time series by Engle(2002). However, the stationarity conditions have been established only ...The dynamic conditional correlation(DCC) model has been widely used for modeling the conditional correlation of multivariate time series by Engle(2002). However, the stationarity conditions have been established only recently and the asymptotic theory of parameter estimation for the DCC model has not yet to be fully discussed. In this paper, we propose an alternative model, namely the scalar dynamic conditional correlation(SDCC) model. Sufficient and easily-checked conditions for stationarity, geometric ergodicity, andβ-mixing with exponential-decay rates are provided. We then show the strong consistency and asymptotic normality of the quasi-maximum-likelihood estimator(QMLE) of the model parameters under regular conditions.The asymptotic results are illustrated by Monte Carlo experiments. As a real-data example, the proposed SDCC model is applied to analyzing the daily returns of the FSTE(financial times and stock exchange) 100 index and FSTE 100 futures. Our model improves the performance of the DCC model in the sense that the Li-Mc Leod statistic of the SDCC model is much smaller and the hedging efficiency is higher.展开更多
基金supported in part by National Natural Science Foundations of China under Grant Nos.70571027,70401020,10647125,and 10635020by the Ministry of Education of China under Grant No.306022
文摘A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data exhibits a power law decay as a whole characterized by 1/f^β processes with possible long range correlations. Subsequently, by using the method of detrended fluctuation analysis (DFA) of the general volatility in the stock markets, we find that the long-range correlations are occurred among the return series and the crossover phenomena exhibit in the results obviously.Further, Shanghai stock market shows long-range correlations in short time scale and shows short-range correlations in long time scale. Whereas, for Japan stock market, the data behaves oppositely absolutely. Last, we compare the varying of scale exponent in large volatility between two stock markets. All results obtained may indicate the possibility of characteristic of multifractal scaling behavior of the financial markets.
文摘Decision-making of investors at the stock exchange can be based on the fundamental indicators of stocks, on the technical indicators, or can exist as a combination of these two methods. The paper gives emphasis to the domain of technical analysis. In the broader sense the technical analysis enables the dynamics of the expected future values of the shares estimation. This can be performed on the basis of the data on historical trends of the revenues, profits and other indicators from the balance sheet, but also on the basis of historical data on changes in the values of the shares. Companies generally belong to the different sectors that have different presumptions of development resulting from the global market trends, technology and other characteristic. Processing of historical data values of the outstanding shares of the Zagreb Stock Exchange (ZSE) is origination of this research. Investors are interested to know the estimation of future returns for the stocks as well as the size of the risk associated with the expected returns. Research task in this paper is finding the optimal portfolio at the ZSE based on the concept of dominant portfolio by Markowitz approach. The portfolio is created by solving non-linear programming problem using the common software tools. The results of obtained optimal portfolios contain relevant conclusions about the specifics of the shares as well as the characteristics of the industrial sectors but also provide a further knowledge about diverse sectors treatment at the stock exchange in a multi-year period.
基金supported by National Natural Science Foundation of China(Grant No.71771224)National Social Science Foundation of China(Grant Nos.14ZDA044 and 15BGJ037)+1 种基金the Program for National Statistics Science Research Plan(Grant No.2016LD02)the Program for Innovation Research in Central University of Finance and Economics
文摘The dynamic conditional correlation(DCC) model has been widely used for modeling the conditional correlation of multivariate time series by Engle(2002). However, the stationarity conditions have been established only recently and the asymptotic theory of parameter estimation for the DCC model has not yet to be fully discussed. In this paper, we propose an alternative model, namely the scalar dynamic conditional correlation(SDCC) model. Sufficient and easily-checked conditions for stationarity, geometric ergodicity, andβ-mixing with exponential-decay rates are provided. We then show the strong consistency and asymptotic normality of the quasi-maximum-likelihood estimator(QMLE) of the model parameters under regular conditions.The asymptotic results are illustrated by Monte Carlo experiments. As a real-data example, the proposed SDCC model is applied to analyzing the daily returns of the FSTE(financial times and stock exchange) 100 index and FSTE 100 futures. Our model improves the performance of the DCC model in the sense that the Li-Mc Leod statistic of the SDCC model is much smaller and the hedging efficiency is higher.