稀疏约束下的合成孔径雷达(SyntheticApertureRadar,SAR)成像技术,通过对稀疏先验建模的稀疏特征进行增强,能有效获取目标特显点的有用信息,但无法对目标的结构特征进行恢复,且对不可避免的非系统误差十分敏感。为此,提出一种依靠交替...稀疏约束下的合成孔径雷达(SyntheticApertureRadar,SAR)成像技术,通过对稀疏先验建模的稀疏特征进行增强,能有效获取目标特显点的有用信息,但无法对目标的结构特征进行恢复,且对不可避免的非系统误差十分敏感。为此,提出一种依靠交替方向多乘子法(Alternating Direction Method of Multipliers,ADMM)面向结构特征增强的稀疏恢复高分辨SAR成像(Structure-feature Enhancement-ADMM,SE-ADMM)算法。该算法引入全变分(Total Variation,TV)正则项建模结构特征,起到增强结构的作用;引入ℓ1范数建模稀疏特征,起到压制噪声作用;引入最小熵范数建模聚焦特征,以保证算法对非系统乘性误差的不敏感性。在ADMM多特征优化框架下,利用“局部-全局”的运算机制,首先分别进行三个特征的邻近算子推导,以获得对应特征解析解,再进行目标全局优化保证特征解之间的协调平衡,以实现目标的多特征增强。另外,ADMM多特征优化框架下变量分裂和多正则项的引入,保证了算法的效率和稳健性。实验部分先后选取SAR仿真数据与实测数据来验证算法的有效性,通过相变热力图定量分析所提算法的恢复性能,进而验证了所提SE-ADMM算法的稳健性与优越性。展开更多
提出面向合成孔径雷达(Synthetic Aperture Radar,SAR)回波数据的复杂结构特征增强算法(Complex Structure Feature Enhancement Algorithm,CEA),面向SAR成像目标的复杂结构特征,算法利用高阶方向全变分(High-order Total Direction Var...提出面向合成孔径雷达(Synthetic Aperture Radar,SAR)回波数据的复杂结构特征增强算法(Complex Structure Feature Enhancement Algorithm,CEA),面向SAR成像目标的复杂结构特征,算法利用高阶方向全变分(High-order Total Direction Variation,HOTDV)正则算子表示,面向SAR成像目标的稀疏特征,算法用ℓ_(1)正则算子表示。算法利用交替方向多乘子法(Alternating Direction Method of Multipliers,ADMM)建立多正则约束优化框架,设计复杂结构分裂变量和稀疏分裂变量,并求出分裂变量解析更新解以实现SAR成像目标的复杂结构特征与稀疏特征的增强。多正则约束优化框架中的对偶分解保证多特征多任务处理能力,增广拉格朗日项的使用则保证了算法的收敛性和稳健性。最后,设计了仿真和实测SAR数据特征增强实验以验证算法的有效性,对比多种传统结构特征增强算法以验证所提复杂结构特征增强算法的优越性。展开更多
文摘稀疏约束下的合成孔径雷达(SyntheticApertureRadar,SAR)成像技术,通过对稀疏先验建模的稀疏特征进行增强,能有效获取目标特显点的有用信息,但无法对目标的结构特征进行恢复,且对不可避免的非系统误差十分敏感。为此,提出一种依靠交替方向多乘子法(Alternating Direction Method of Multipliers,ADMM)面向结构特征增强的稀疏恢复高分辨SAR成像(Structure-feature Enhancement-ADMM,SE-ADMM)算法。该算法引入全变分(Total Variation,TV)正则项建模结构特征,起到增强结构的作用;引入ℓ1范数建模稀疏特征,起到压制噪声作用;引入最小熵范数建模聚焦特征,以保证算法对非系统乘性误差的不敏感性。在ADMM多特征优化框架下,利用“局部-全局”的运算机制,首先分别进行三个特征的邻近算子推导,以获得对应特征解析解,再进行目标全局优化保证特征解之间的协调平衡,以实现目标的多特征增强。另外,ADMM多特征优化框架下变量分裂和多正则项的引入,保证了算法的效率和稳健性。实验部分先后选取SAR仿真数据与实测数据来验证算法的有效性,通过相变热力图定量分析所提算法的恢复性能,进而验证了所提SE-ADMM算法的稳健性与优越性。
文摘提出面向合成孔径雷达(Synthetic Aperture Radar,SAR)回波数据的复杂结构特征增强算法(Complex Structure Feature Enhancement Algorithm,CEA),面向SAR成像目标的复杂结构特征,算法利用高阶方向全变分(High-order Total Direction Variation,HOTDV)正则算子表示,面向SAR成像目标的稀疏特征,算法用ℓ_(1)正则算子表示。算法利用交替方向多乘子法(Alternating Direction Method of Multipliers,ADMM)建立多正则约束优化框架,设计复杂结构分裂变量和稀疏分裂变量,并求出分裂变量解析更新解以实现SAR成像目标的复杂结构特征与稀疏特征的增强。多正则约束优化框架中的对偶分解保证多特征多任务处理能力,增广拉格朗日项的使用则保证了算法的收敛性和稳健性。最后,设计了仿真和实测SAR数据特征增强实验以验证算法的有效性,对比多种传统结构特征增强算法以验证所提复杂结构特征增强算法的优越性。
文摘传统基于■1范数正则化算子(least absolute shrinkage and selection operator,LASSO)模型的合成孔径雷达(synthetic aperture radar,SAR)压缩感知类稀疏成像算法易丢失弱散射点。基于扩展型组LASSO系列模型的算法虽可增强SAR结构特征以保留弱散射点,但由于其增强过程中本质上采用了欧式距离方法进行特征分块,致使分块较为“机械”,不能很好地提取目标结构,从而影响最终高分辨SAR成像质量。针对上述问题,提出一种基于形态学自适应分块的交替方向多乘子法(morphological auto-blocking alternating direction method of multipliers,MAB-ADMM)来实现高分辨SAR多特征表征。该算法通过建立基于形态学分块的■M/■F混合结构范数和■1稀疏范数来分别引入结构和稀疏先验,从而实现结构与稀疏多特征增强。由于采用了基于测地距离的形态学分块方式,MAB-ADMM算法能够更加有效地识别感兴趣的目标轮廓,从而提高结构增强的准确度和完整度。实验部分通过采用仿真复数据和实测SAR数据对所提算法和传统算法的成像结果进行定性对比,从而验证所提算法具有优越的多特征增强能力。此外,采用相变热力图对所提算法和传统算法的恢复能力进行定量对比,并利用MSTAR数据验证了所提算法可有效针对分类算法进行结果提升。