目前分频风电系统(fractional frequency wind power system,FFWPS)作为海上风力发电系统研究的一个新潮流,已经引起国际学术界的广泛注意。国外学者对分频风电系统应用于用于海上风电的经济性、技术可行性以及关键设备可行性等方面进...目前分频风电系统(fractional frequency wind power system,FFWPS)作为海上风力发电系统研究的一个新潮流,已经引起国际学术界的广泛注意。国外学者对分频风电系统应用于用于海上风电的经济性、技术可行性以及关键设备可行性等方面进行了研究,这说明分频风力发电系统是一种具有竞争力的海上风力发电系统方案。该文针对分频风电系统的结构特点,提出一种适用于分频风电系统风机并网的结构和方法,该并网方法可实现分频风电系统中风机的逐台并网,具有经济和技术上的优势。介绍分频风电系统并网主电路和控制电路的设计,以及所搭建的分频风电系统多机并网实验平台,通过实验证明所提出的并网结构和方法的可行性和有效性。展开更多
This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxi...This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.展开更多
文摘目前分频风电系统(fractional frequency wind power system,FFWPS)作为海上风力发电系统研究的一个新潮流,已经引起国际学术界的广泛注意。国外学者对分频风电系统应用于用于海上风电的经济性、技术可行性以及关键设备可行性等方面进行了研究,这说明分频风力发电系统是一种具有竞争力的海上风力发电系统方案。该文针对分频风电系统的结构特点,提出一种适用于分频风电系统风机并网的结构和方法,该并网方法可实现分频风电系统中风机的逐台并网,具有经济和技术上的优势。介绍分频风电系统并网主电路和控制电路的设计,以及所搭建的分频风电系统多机并网实验平台,通过实验证明所提出的并网结构和方法的可行性和有效性。
文摘This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.