With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phen...With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phenomena in detail with plot. As a result, we find that after the interaction, the solitons make elastic collision and there are no exchanges of their physical quantities including energy, velocity and shape except the phase shift.展开更多
Some new structures and interactions of solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are revealed with the help of the idea of the bilinear method and variable separation approach. The soluti...Some new structures and interactions of solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are revealed with the help of the idea of the bilinear method and variable separation approach. The solutions to describe the interactions between two dromions, between a line soliton and a y-periodic soliton, and between two y-periodic solitons are included in our results. Detailed behaviors of interaction are illustrated both analytically and in graphically. Our analysis shows that the interaction properties between two solitons are related to the form of interaction constant. The form of interaction constant and the dispersion relationship are related to the form of the seed solution (u0, v0, w0 ) in Backlund transformation.展开更多
Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution...Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.展开更多
The coherent and incoherent interactions between discrete-soliton trains are numerically investigated in lightinduced two-dimensional photonic lattices. The solutions of discrete-soliton trains for diamond and square ...The coherent and incoherent interactions between discrete-soliton trains are numerically investigated in lightinduced two-dimensional photonic lattices. The solutions of discrete-soliton trains for diamond and square lattices are obtained by Petviashvili iteration method. It is found that for both the kinds of lattices, two in-phase (out- of-phase) discrete-soliton trains attract (repel) each other, and the intermediates are always accompanied with energy transfer. While the interaction forces between two incoherent discrete-soliton trains are always attractive.展开更多
文摘With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phenomena in detail with plot. As a result, we find that after the interaction, the solitons make elastic collision and there are no exchanges of their physical quantities including energy, velocity and shape except the phase shift.
基金The project supported by the State Key Laboratory of 0il/Gas Reservoir Geology and Exploitation "PLN0402"The authors would like to thank Prof.Sen-Yue Lou for helpful discussions.
文摘Some new structures and interactions of solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are revealed with the help of the idea of the bilinear method and variable separation approach. The solutions to describe the interactions between two dromions, between a line soliton and a y-periodic soliton, and between two y-periodic solitons are included in our results. Detailed behaviors of interaction are illustrated both analytically and in graphically. Our analysis shows that the interaction properties between two solitons are related to the form of interaction constant. The form of interaction constant and the dispersion relationship are related to the form of the seed solution (u0, v0, w0 ) in Backlund transformation.
基金National Natural Science Foundation of China under Grant No.10675065the Science Research Foundation of the Education Department of Zhejiang Province under Grant No.20070979+1 种基金the Natural Science Foundation of Zhejiang Province under Grant No.Y604036the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation\PLN0402
文摘Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.
文摘The coherent and incoherent interactions between discrete-soliton trains are numerically investigated in lightinduced two-dimensional photonic lattices. The solutions of discrete-soliton trains for diamond and square lattices are obtained by Petviashvili iteration method. It is found that for both the kinds of lattices, two in-phase (out- of-phase) discrete-soliton trains attract (repel) each other, and the intermediates are always accompanied with energy transfer. While the interaction forces between two incoherent discrete-soliton trains are always attractive.