Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tac...Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tactics and economic lever tactics,and those that underlie traffic system management (TSM) are node traffic management tactics,arterial traffic management tactics and area traffic management tactics.The specific contents and design methods of urban traffic total demand control,urban traffic structure optimization,road traffic movement organization based on TDM and intersection traffic management,road signs and markings management,optimized design of traffic signals and management of parking spaces based on TSM are put forward.The urban traffic management planning scheme design method has already been used in the urban traffic management “Smooth Traffic Project” in China.展开更多
In order to minimize the delays and stops caused by the early started coordinated green phase of the vehicle- actuated signal systems, a stochastic offsets calculation method based on the new types of advanced traffic...In order to minimize the delays and stops caused by the early started coordinated green phase of the vehicle- actuated signal systems, a stochastic offsets calculation method based on the new types of advanced traffic management system (ATMS) data is proposed. As the mainline green starts randomly in vehicle-actuated signal systems, the random theory is applied to obtain the distribution of the unused green time at side streets based on the green gap-out mechanism. Then, the green start time of the mainline can be selected at the point with maximum probability to minimize the delays or stops caused by the randomly started mainline green. A case study in Maine, USA, whose traffic conditions are similar to those of the middle-size Chinese cities, proves that the proposed method can significantly reduce the travel time and delays.展开更多
基金The National Natural Science Foundation of China(No.50378016).
文摘Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tactics and economic lever tactics,and those that underlie traffic system management (TSM) are node traffic management tactics,arterial traffic management tactics and area traffic management tactics.The specific contents and design methods of urban traffic total demand control,urban traffic structure optimization,road traffic movement organization based on TDM and intersection traffic management,road signs and markings management,optimized design of traffic signals and management of parking spaces based on TSM are put forward.The urban traffic management planning scheme design method has already been used in the urban traffic management “Smooth Traffic Project” in China.
基金The National Natural Science Foundation of China(No. 50422283 )China Postdoctoral Science Foundation (No.20110491333)
文摘In order to minimize the delays and stops caused by the early started coordinated green phase of the vehicle- actuated signal systems, a stochastic offsets calculation method based on the new types of advanced traffic management system (ATMS) data is proposed. As the mainline green starts randomly in vehicle-actuated signal systems, the random theory is applied to obtain the distribution of the unused green time at side streets based on the green gap-out mechanism. Then, the green start time of the mainline can be selected at the point with maximum probability to minimize the delays or stops caused by the randomly started mainline green. A case study in Maine, USA, whose traffic conditions are similar to those of the middle-size Chinese cities, proves that the proposed method can significantly reduce the travel time and delays.