In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ...In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.展开更多
Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bid...Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecu- lar components and mechanisms that are responsible for those interactions.展开更多
Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical mod...Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost.展开更多
The present paper summarizes the results of previous studies, including the structure and principle of the rotary ring flume for researching the fine sediment movement, the mechanism of the flume, method of eliminatin...The present paper summarizes the results of previous studies, including the structure and principle of the rotary ring flume for researching the fine sediment movement, the mechanism of the flume, method of eliminating the influence of the centrifugal force and sediment movement experiments with periodic alternating current. Also included are the experiment-based relationship among sediment concentration, bed shear stress and silt carrying capacity, a proposed erosion-deposition function and bed erosion-deposition calculation together with the results of verification.展开更多
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj...The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.展开更多
The systematical and scalable frameworks were provided for estimating the blocking probabilities under asynchronous traffic in optical burst switching(OBS) nodes with limited wavelength conversion capability(LWCC) . T...The systematical and scalable frameworks were provided for estimating the blocking probabilities under asynchronous traffic in optical burst switching(OBS) nodes with limited wavelength conversion capability(LWCC) . The relevant system architectures of limited range and limited number of wavelength converters(WCs) deployed by a share-per-fiber(SPF) mode were developed,and the novel theoretical analysis of node blocking probability was derived by combining the calculation of discouraged arrival rate in a birth-death process and two-dimensional Markov chain model of SPF. The simulation results on single node performance verify the accuracy and effectiveness of the analysis models. Under most scenarios,it is difficult to distinguish the plots generated by the analysis and simulation. As the conversion degree increases,the accuracy of the analysis model worsens slightly. However,the utmost error on burst loss probability is far less than one order of magnitude and hence,still allows for an accurate estimate. Some results are of actual significance to the construction of next-generation commercial OBS backbones.展开更多
Variation in soil properties as a result of the conversion of the tropical rainforest to a monospecific plantation of teak, tectona grandis, was examined in Akure forest reserve in Southwestern Nigeria. Comparison was...Variation in soil properties as a result of the conversion of the tropical rainforest to a monospecific plantation of teak, tectona grandis, was examined in Akure forest reserve in Southwestern Nigeria. Comparison was made in the active rooting zone of 50 cm soil depth. It was discovered that there were no significant differences in the physical properties except in the value of organic matter content at the top 10 cm layer but chemical properties such as the pH and organic carbon changed significantly at the top 10 cm layer. Differences in other chemical properties, such as the available P, exchangeable cations K, Ca and Mg, the exchangeable acidity and the cation exchange capacity were minor. This showed that no nutrient was limiting or was likely to be limiting in the soil for subsequent short rotation of plantation development.展开更多
[4Fe-4S]-dependent radical S-adenosylmethionine(SAM)proteins are a superfamily of oxidoreductases that can catalyze a series of challenging transformations using the common 5-d Ado radical intermediate.Although the st...[4Fe-4S]-dependent radical S-adenosylmethionine(SAM)proteins are a superfamily of oxidoreductases that can catalyze a series of challenging transformations using the common 5-d Ado radical intermediate.Although the structures and functions of radical SAM enzymes have been extensively studied,the electronic state-dependent reactions of the[4Fe-4S]clusters in these enzymes are still elusive.Herein we performed QM/MM calculations to elucidate the electronic state-dependent reactivity of the[4Fe-4S]cluster in pyruvate-formate lyase activating enzyme.Our calculations show that the electronic statedependent SAM activation by the[4Fe-4S]clusters in radical SAM enzyme is determined by both the super-exchange and exchange-enhanced reactivities.The super-exchange coupling in the[4Fe-4S]cluster favors the antiferromagnetic coupling between two neighbouring pairs,which results in theα-electron rather than theβ-electron donation from the[4Fe-4S]^(1+)cluster toward the SAM activation.Meanwhile,in the most favorable electronic state for the reductive cleavage of S-C5′,Fe4 would donate itsα-electron to gain the maximum exchange interactions in the Fe4-block.Such super-exchange and exchange-enhanced reactivity could be the general principles for reactivities of[4Fe-4S]cluster in RS enzymes.展开更多
A staggered impulse turbine is proposed for asymmetric air flows in Oscillating Water Column wave energy plants, which is expected to enhance the pneumatic power output in a wave cycle. The setting angle of rotor blad...A staggered impulse turbine is proposed for asymmetric air flows in Oscillating Water Column wave energy plants, which is expected to enhance the pneumatic power output in a wave cycle. The setting angle of rotor blades is set as 5°. The 3D numerical simulations were conducted under steady conditions using MRF and Mixing Plane model based on CFD software Fluent 12.0. Its mean efficiencies under different velocity amplitude ratios are studied using quasi-steady analysis, which derive corresponding data from the numerical simulation. It is found that the staggered turbine shows better performance than the conventional one under the asymmetrical air flows. Furthermore, its mean efficiency and output-work in a wave period are compared with another unsymmetrical twin impulse turbine system. The results show that the staggered turbine shows better output-work performance than the twin turbine system over the high flow coefficient domain(φ>0.7), which provides more choices to future research on turbine's optimization.展开更多
We suggest that cobalt-oxychalcogenide layers constructed by vertex sharing CoA_2O_2(A = S, Se, Te) tetrahedra, such as BaCoAO, are strongly correlated multi-orbitals electron systems that can provide important clues ...We suggest that cobalt-oxychalcogenide layers constructed by vertex sharing CoA_2O_2(A = S, Se, Te) tetrahedra, such as BaCoAO, are strongly correlated multi-orbitals electron systems that can provide important clues on the cause of unconventional superconductivity. Differing from cuprates and iron-based superconductors, these systems lack of the D_(4h) symmetry classification. However, their parental compounds possess antiferromagnetic(AFM) Mott insulating states through pure superexchange interactions and the low energy physics near Fermi surfaces upon doping is mainly attributed to the three t_(2g) orbitals that dominate the AFM interactions. We derive a low energy effective model for these systems and predict that a d-wave-like superconducting state with reasonable high transition temperature can emerge by suppressing the AFM ordering even if the pairing symmetry can not be classified by the rotational symmetry any more.展开更多
In the framework of the relativistic mean field theory including the hyperon-hyperon(YY) interactions,protoneutron stars with a weakly interacting light U boson are studied. The U-boson leads to the increase of the st...In the framework of the relativistic mean field theory including the hyperon-hyperon(YY) interactions,protoneutron stars with a weakly interacting light U boson are studied. The U-boson leads to the increase of the star maximum mass. The modification to the maximum mass by the U-boson with the strong YY interaction is larger than that with the weak YY interaction. The maximum mass of the protoneutron star is less sensitive to the U-boson than that of the neutron star. The inclusion of the U-boson narrows down the mass window for the hyperonized protoneutron stars. As g^2/μ~2 increases, the species of hyperons, which can appear in a stable protoneutron star decrease. The rotation frequency, the red shift, the momentum of inertia and the total neutrino fraction of PSR J1903-0327 are sensitive to the U-boson and change with g^2/μ~2 in an approximate linear trend. The possible way to constrain the coupling constants of the U-boson is discussed.展开更多
Mutation of mevalonate kinase (MVK) is thought to account for most cases of hyperimmunoglobulinemia D syndrome (HIDS) with recurrent fever. However, its mechanism and the relationship between elevated serum immuno...Mutation of mevalonate kinase (MVK) is thought to account for most cases of hyperimmunoglobulinemia D syndrome (HIDS) with recurrent fever. However, its mechanism and the relationship between elevated serum immunoglobulin D (IgD) and the clinical features of HIDS are unclear. In this study, we generated by fusion PCR a vector to express high levels of chimeric secretory IgD (cslgD) specifically in the liver. We then generated seven founder lines of transgenic mice by co-microinjection, and verified them using genomic PCR and Southern blotting. We detected the expression of csIgD by reverse transcription PCR, quantitative PCR, western blotting, and enzyme-linked immunosorbent assays. We demonstrated that csIgD could be specifically and stably expressed in the liver. We used flow cytometry to show that overexpression of csIgD in the bone marrow and spleen cells had no effect on B cell development. Morphologic and anatomical observation of the transgenic mice revealed skin damage, hepatosplenomegaly, and nephromegaly in some transgenic mice; in these mice, pathological sections showed high levels of cell necrosis and protein-like sediments in the liver, spleen, and kidney. We demonstrated that the genomic insertion sites of the transgeues did not disrupt the MVK gene on mouse chromosome 5. This transgenic mouse will be useful to explore the pathogenesis of HIDS.展开更多
Nanopore has been developed to be a powerful,single-molecule analytical tool for sensing ions,small organic molecules and biomacromolecules such as proteins and DNAs.Generally,the identity of the analyte can be reveal...Nanopore has been developed to be a powerful,single-molecule analytical tool for sensing ions,small organic molecules and biomacromolecules such as proteins and DNAs.Generally,the identity of the analyte can be revealed by current amplitude changes and mean dwell time of the analyte binding events.In some cases,generation of highly characteristic current events affords an alternative way of analyte determination with high confidence level.However,we found that secondary structures in DNA/RNA hybrids might severely hinder the generation of signature events during their translocation through?-hemolysin nanopore.In this report,we propose a strategy to add a certain concentration of urea in the buffer solution for single channel recordings and validate that low concentration of urea can effectively denature the secondary structures in DNA hybrids and recover the generation of signature events.This finding might be useful in other secondary structure-related nanopore sensing activities.展开更多
基金Project(51241001) supported by the National Natural Science Foundation of ChinaProject(ZR2011EMM004) supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(TS20110828) supported by Taishan Scholarship Project of Shandong Province,ChinaProject(2014TDJH104) supported by SDUST Research Fund,Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources of Shandong Province,China
文摘In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.
文摘Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecu- lar components and mechanisms that are responsible for those interactions.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05004-003)the National Basic Research Program of China(No.2013CB228602)the National High Tech Research Program of China(No.2013AA064202)
文摘Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost.
文摘The present paper summarizes the results of previous studies, including the structure and principle of the rotary ring flume for researching the fine sediment movement, the mechanism of the flume, method of eliminating the influence of the centrifugal force and sediment movement experiments with periodic alternating current. Also included are the experiment-based relationship among sediment concentration, bed shear stress and silt carrying capacity, a proposed erosion-deposition function and bed erosion-deposition calculation together with the results of verification.
基金Projects(51005115, 51005248) supported by the National Natural Science Foundation of ChinaProject(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of State Key Laboratory of Mechanical Transmission in Chongqing University, ChinaProject(QC201101) supported by Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province, China
文摘The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.
基金Project(60632010) supported by the National Natural Science Foundation of China
文摘The systematical and scalable frameworks were provided for estimating the blocking probabilities under asynchronous traffic in optical burst switching(OBS) nodes with limited wavelength conversion capability(LWCC) . The relevant system architectures of limited range and limited number of wavelength converters(WCs) deployed by a share-per-fiber(SPF) mode were developed,and the novel theoretical analysis of node blocking probability was derived by combining the calculation of discouraged arrival rate in a birth-death process and two-dimensional Markov chain model of SPF. The simulation results on single node performance verify the accuracy and effectiveness of the analysis models. Under most scenarios,it is difficult to distinguish the plots generated by the analysis and simulation. As the conversion degree increases,the accuracy of the analysis model worsens slightly. However,the utmost error on burst loss probability is far less than one order of magnitude and hence,still allows for an accurate estimate. Some results are of actual significance to the construction of next-generation commercial OBS backbones.
文摘Variation in soil properties as a result of the conversion of the tropical rainforest to a monospecific plantation of teak, tectona grandis, was examined in Akure forest reserve in Southwestern Nigeria. Comparison was made in the active rooting zone of 50 cm soil depth. It was discovered that there were no significant differences in the physical properties except in the value of organic matter content at the top 10 cm layer but chemical properties such as the pH and organic carbon changed significantly at the top 10 cm layer. Differences in other chemical properties, such as the available P, exchangeable cations K, Ca and Mg, the exchangeable acidity and the cation exchange capacity were minor. This showed that no nutrient was limiting or was likely to be limiting in the soil for subsequent short rotation of plantation development.
基金supported by the National Natural Science Foundation of China (No.22073077, No.21933009,and No.21907082)
文摘[4Fe-4S]-dependent radical S-adenosylmethionine(SAM)proteins are a superfamily of oxidoreductases that can catalyze a series of challenging transformations using the common 5-d Ado radical intermediate.Although the structures and functions of radical SAM enzymes have been extensively studied,the electronic state-dependent reactions of the[4Fe-4S]clusters in these enzymes are still elusive.Herein we performed QM/MM calculations to elucidate the electronic state-dependent reactivity of the[4Fe-4S]cluster in pyruvate-formate lyase activating enzyme.Our calculations show that the electronic statedependent SAM activation by the[4Fe-4S]clusters in radical SAM enzyme is determined by both the super-exchange and exchange-enhanced reactivities.The super-exchange coupling in the[4Fe-4S]cluster favors the antiferromagnetic coupling between two neighbouring pairs,which results in theα-electron rather than theβ-electron donation from the[4Fe-4S]^(1+)cluster toward the SAM activation.Meanwhile,in the most favorable electronic state for the reductive cleavage of S-C5′,Fe4 would donate itsα-electron to gain the maximum exchange interactions in the Fe4-block.Such super-exchange and exchange-enhanced reactivity could be the general principles for reactivities of[4Fe-4S]cluster in RS enzymes.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279190 and 51311140259)National High Tech Research and Development Program("863"program,Grant No.2011AA050201)
文摘A staggered impulse turbine is proposed for asymmetric air flows in Oscillating Water Column wave energy plants, which is expected to enhance the pneumatic power output in a wave cycle. The setting angle of rotor blades is set as 5°. The 3D numerical simulations were conducted under steady conditions using MRF and Mixing Plane model based on CFD software Fluent 12.0. Its mean efficiencies under different velocity amplitude ratios are studied using quasi-steady analysis, which derive corresponding data from the numerical simulation. It is found that the staggered turbine shows better performance than the conventional one under the asymmetrical air flows. Furthermore, its mean efficiency and output-work in a wave period are compared with another unsymmetrical twin impulse turbine system. The results show that the staggered turbine shows better output-work performance than the twin turbine system over the high flow coefficient domain(φ>0.7), which provides more choices to future research on turbine's optimization.
基金supported by the National Basic Research Program of China (2015CB921300)the National Natural Science Foundation of China (11334012)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB07000000)
文摘We suggest that cobalt-oxychalcogenide layers constructed by vertex sharing CoA_2O_2(A = S, Se, Te) tetrahedra, such as BaCoAO, are strongly correlated multi-orbitals electron systems that can provide important clues on the cause of unconventional superconductivity. Differing from cuprates and iron-based superconductors, these systems lack of the D_(4h) symmetry classification. However, their parental compounds possess antiferromagnetic(AFM) Mott insulating states through pure superexchange interactions and the low energy physics near Fermi surfaces upon doping is mainly attributed to the three t_(2g) orbitals that dominate the AFM interactions. We derive a low energy effective model for these systems and predict that a d-wave-like superconducting state with reasonable high transition temperature can emerge by suppressing the AFM ordering even if the pairing symmetry can not be classified by the rotational symmetry any more.
基金Supported by Jiangsu Province Natural Science Foundation Youth Fund of China under Grant No.Bk20140982National Natural Science Foundation of China under Grant No.11447165+1 种基金Youth Innovation Promotion Association,Chinese Academy of Sciences under Grant No.2016056the Development Project of Science and Technology of Jilin Province under Grant No.20180520077JH
文摘In the framework of the relativistic mean field theory including the hyperon-hyperon(YY) interactions,protoneutron stars with a weakly interacting light U boson are studied. The U-boson leads to the increase of the star maximum mass. The modification to the maximum mass by the U-boson with the strong YY interaction is larger than that with the weak YY interaction. The maximum mass of the protoneutron star is less sensitive to the U-boson than that of the neutron star. The inclusion of the U-boson narrows down the mass window for the hyperonized protoneutron stars. As g^2/μ~2 increases, the species of hyperons, which can appear in a stable protoneutron star decrease. The rotation frequency, the red shift, the momentum of inertia and the total neutrino fraction of PSR J1903-0327 are sensitive to the U-boson and change with g^2/μ~2 in an approximate linear trend. The possible way to constrain the coupling constants of the U-boson is discussed.
基金supported by the National Basic Research Program of China(Grant No.2010CB945300)
文摘Mutation of mevalonate kinase (MVK) is thought to account for most cases of hyperimmunoglobulinemia D syndrome (HIDS) with recurrent fever. However, its mechanism and the relationship between elevated serum immunoglobulin D (IgD) and the clinical features of HIDS are unclear. In this study, we generated by fusion PCR a vector to express high levels of chimeric secretory IgD (cslgD) specifically in the liver. We then generated seven founder lines of transgenic mice by co-microinjection, and verified them using genomic PCR and Southern blotting. We detected the expression of csIgD by reverse transcription PCR, quantitative PCR, western blotting, and enzyme-linked immunosorbent assays. We demonstrated that csIgD could be specifically and stably expressed in the liver. We used flow cytometry to show that overexpression of csIgD in the bone marrow and spleen cells had no effect on B cell development. Morphologic and anatomical observation of the transgenic mice revealed skin damage, hepatosplenomegaly, and nephromegaly in some transgenic mice; in these mice, pathological sections showed high levels of cell necrosis and protein-like sediments in the liver, spleen, and kidney. We demonstrated that the genomic insertion sites of the transgeues did not disrupt the MVK gene on mouse chromosome 5. This transgenic mouse will be useful to explore the pathogenesis of HIDS.
基金the National Basic Research Program of China (2013CB932800)the National Natural Science Foundation of China (21175135, 21375130, 21205119, 21475132)the CAS Hundred Talents Program
文摘Nanopore has been developed to be a powerful,single-molecule analytical tool for sensing ions,small organic molecules and biomacromolecules such as proteins and DNAs.Generally,the identity of the analyte can be revealed by current amplitude changes and mean dwell time of the analyte binding events.In some cases,generation of highly characteristic current events affords an alternative way of analyte determination with high confidence level.However,we found that secondary structures in DNA/RNA hybrids might severely hinder the generation of signature events during their translocation through?-hemolysin nanopore.In this report,we propose a strategy to add a certain concentration of urea in the buffer solution for single channel recordings and validate that low concentration of urea can effectively denature the secondary structures in DNA hybrids and recover the generation of signature events.This finding might be useful in other secondary structure-related nanopore sensing activities.