Aiming at removing fog from traffic images, a distance field is built according to the characteristics of traffic images, and a novel parameter estimation method based on the traffic image sequence is proposed. The fo...Aiming at removing fog from traffic images, a distance field is built according to the characteristics of traffic images, and a novel parameter estimation method based on the traffic image sequence is proposed. The fog model is derived from atmospheric scattering models. The direction of the distance field is parallel to the center line of the road, which increases along a line from the observer to the horizon, and the normalization is carried out to improve the distribution of the distance field model. After parameter initialization, the variations of the average gray values of reference regions are taken as the determining conditions to adjust the parameters. Finally, restorations are made by the fog model. Experimental results show that the proposed method can effectively remove fog from traffic images.展开更多
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design...In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels.展开更多
基金The National Natural Science Foundation of China ( No.60972001)the National Key Technologies R& D Program of China during the 11th Five-Year Period ( No. 2009BAG13A06)
文摘Aiming at removing fog from traffic images, a distance field is built according to the characteristics of traffic images, and a novel parameter estimation method based on the traffic image sequence is proposed. The fog model is derived from atmospheric scattering models. The direction of the distance field is parallel to the center line of the road, which increases along a line from the observer to the horizon, and the normalization is carried out to improve the distribution of the distance field model. After parameter initialization, the variations of the average gray values of reference regions are taken as the determining conditions to adjust the parameters. Finally, restorations are made by the fog model. Experimental results show that the proposed method can effectively remove fog from traffic images.
基金supported by the Fundamental Research Funds for the Central Universities(NOS.NS2019054,NS2020045)。
文摘In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels.