As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with t...As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.展开更多
Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the sceni...Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the scenic spot and around its influencing area are focused on. It is found that the terrain, land use, nearby transport network and scenery point distribution have significant impact on the allocation of bicycle-sharing system. While the candidate bicycle-sharing stations installed at the inner scenic points, entrances/exits and metro stations are fixed, the ones installed at bus-stations and other passenger concentration buildings are adjustable. Aiming at minimizing the total cycling distance and overlapping rate, an optimization model is proposed and solved based on the idea of cluster concept and greedy heuristic. A revealed preference/stated preference (RP/SP) combined survey was conducted at Xuanwu Lake in Nanjing, China, to get an insight into the touring trip characteristics and bicycle-sharing tendency. The results reveal that 39.81% visitors accept a cycling distance of 1-3 km and 62.50% respondents think that the bicycle-sharing system should charge an appropriate fee. The sttrvey indicates that there is high possibility to carry out a bicycle-sharing system at Xuanwu Lake. Optimizing the allocation problem cluster by cluster rather than using an exhaustive search method significantly reduces the computing amount from O(2^43) to O(43 2). The 500 m-radius-coverage rate for the alternative optimized by 500 m-radius-cluster and 800 m-radius-cluster is 89.2% and 68.5%, respectively. The final layout scheme will provide decision makers engineering guidelines and theoretical support.展开更多
The prediction of a ship's resistance especially the viscous wave-making resistance is an important issue in CFD applications. In this paper, the resistances of six ships from hull 1 to hull 6 with different hull for...The prediction of a ship's resistance especially the viscous wave-making resistance is an important issue in CFD applications. In this paper, the resistances of six ships from hull 1 to hull 6 with different hull forms advancing in still water are numerically studied using the solver naoe-FOAM-SJTU, which was developed based on the open source code package OpenFOAM. Different components of the resistances are computed and compared while considering two speed conditions (12 kn and 16 kn). The resistance of hull 3 is the smallest while that of hull 5 is the largest at the same speed. The results show hull 3 is a good reference for the design of similar ships, which can provide some valuable guidelines for hull form optimization.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level progr...An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.展开更多
Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermo...Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermore, a mixture of continuous/discrete decision variables makes the mixed network design problem (MNDP) more complicated and difficult to solve. We adopt a surrogate-based optimization (SBO) framework to solve three featured categories of NDPs (continuous, discrete, and mixed-integer). We prove that the method is asymptotically completely convergent when solving continuous NDPs, guaranteeing a global optimum with probability one through an indefinitely long run. To demonstrate the practical performance of the proposed framework, numerical examples are provided to compare SBO with some existing solving algorithms and other heuristics in the literature for NDP. The results show that SBO is one of the best algorithms in terms of both accuracy and efficiency, and it is efficient for solving large-scale problems with more than 20 decision variables. The SBO approach presented in this paper is a general algorithm of solving other optimization problems in the transportation field.展开更多
In communication networks (CNs), the uncertainty is caused by the dynamic nature of the traffic demands. Therefore there is a need to incorporate the uncertainty into the network bandwidth capacity design. For this ...In communication networks (CNs), the uncertainty is caused by the dynamic nature of the traffic demands. Therefore there is a need to incorporate the uncertainty into the network bandwidth capacity design. For this purpose, this paper developed a fuzzy methodology for network bandwidth design under demand uncertainty. This methodology is usually used for offiine traffic engineering optimization, which takes a centralized view of bandwidth design, resource utilization, and performance evaluation. In this proposed methodology, uncertain traffic demands are first handled into a fuzzy number via a fuzzification method. Then a fuzzy optimization model for the network bandwidth allocation problem is formulated with the consideration of the trade-off between resource utilization and network performance. Accordingly, the optimal network bandwidth capacity can be obtained by maximizing network revenue in CNs. Finally, an illustrative numerical example is presented for the purpose of verification.展开更多
In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then dev...In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then developed to formulate optimization problem for such a system.Simultaneously,the main factors,such as travel time,pricing and convenience which influence travelers' choice behaviors are all considered and a combined assignment model is proposed to simulate travelers' mode and route choices.A bi-level programming model,in which the multi-objective optimization model is treated as the upper-level problem and the combined assignment model is processed as the lower-level problem,is then presented to solve multi-criterion system optimization problem for urban multimodal traffic network.The solution algorithms of the proposed models are also presented.Finally,the model and its algorithms are illustrated through a simple numerical example.展开更多
基金Supported by the National Natural Science Foundation of China(No.51565036)
文摘As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.
基金Project(51208261)supported by the National Natural Science Foundation of ChinaProject(12YJCZH062)supported by the Ministry of Education of Humanities and Social Science of ChinaProject(30920140132033)supported by the Fundamental Research Funds for the Central Universities,China
文摘Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the scenic spot and around its influencing area are focused on. It is found that the terrain, land use, nearby transport network and scenery point distribution have significant impact on the allocation of bicycle-sharing system. While the candidate bicycle-sharing stations installed at the inner scenic points, entrances/exits and metro stations are fixed, the ones installed at bus-stations and other passenger concentration buildings are adjustable. Aiming at minimizing the total cycling distance and overlapping rate, an optimization model is proposed and solved based on the idea of cluster concept and greedy heuristic. A revealed preference/stated preference (RP/SP) combined survey was conducted at Xuanwu Lake in Nanjing, China, to get an insight into the touring trip characteristics and bicycle-sharing tendency. The results reveal that 39.81% visitors accept a cycling distance of 1-3 km and 62.50% respondents think that the bicycle-sharing system should charge an appropriate fee. The sttrvey indicates that there is high possibility to carry out a bicycle-sharing system at Xuanwu Lake. Optimizing the allocation problem cluster by cluster rather than using an exhaustive search method significantly reduces the computing amount from O(2^43) to O(43 2). The 500 m-radius-coverage rate for the alternative optimized by 500 m-radius-cluster and 800 m-radius-cluster is 89.2% and 68.5%, respectively. The final layout scheme will provide decision makers engineering guidelines and theoretical support.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos.l1072154, 51379125), the National Key Basic Research Development Plan (973 Plan) Project of China (Grant No.2013CB036103), the High Technology of Marine Research Project of the Ministry of Industry and Information Technology of China and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. 2013022).
文摘The prediction of a ship's resistance especially the viscous wave-making resistance is an important issue in CFD applications. In this paper, the resistances of six ships from hull 1 to hull 6 with different hull forms advancing in still water are numerically studied using the solver naoe-FOAM-SJTU, which was developed based on the open source code package OpenFOAM. Different components of the resistances are computed and compared while considering two speed conditions (12 kn and 16 kn). The resistance of hull 3 is the smallest while that of hull 5 is the largest at the same speed. The results show hull 3 is a good reference for the design of similar ships, which can provide some valuable guidelines for hull form optimization.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
基金Projects(71171200,51108465,71101155)supported by the National Natural Science Foundation of China
文摘An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LR17E080002), the National Natural Science Foundation of China (Nos. 51508505, 71771198, 51338008, and 51378298), the Fundamental Research Funds for the Central Universities, China (No. 2017QNA4025), and the Key Research and Development Program of Zhejiang Province, China (No. 2018C01007)
文摘Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermore, a mixture of continuous/discrete decision variables makes the mixed network design problem (MNDP) more complicated and difficult to solve. We adopt a surrogate-based optimization (SBO) framework to solve three featured categories of NDPs (continuous, discrete, and mixed-integer). We prove that the method is asymptotically completely convergent when solving continuous NDPs, guaranteeing a global optimum with probability one through an indefinitely long run. To demonstrate the practical performance of the proposed framework, numerical examples are provided to compare SBO with some existing solving algorithms and other heuristics in the literature for NDP. The results show that SBO is one of the best algorithms in terms of both accuracy and efficiency, and it is efficient for solving large-scale problems with more than 20 decision variables. The SBO approach presented in this paper is a general algorithm of solving other optimization problems in the transportation field.
基金partially supported by the grants from the National Natural Science Foundation of Chinathe Knowledge Innovation Program of the Chinese Academy of Sciences+1 种基金the GRANT-IN-AID FOR SCIEN-TIFIC RESEARCH (No. 19500070)MEXT.ORC (2004-2008), Japan
文摘In communication networks (CNs), the uncertainty is caused by the dynamic nature of the traffic demands. Therefore there is a need to incorporate the uncertainty into the network bandwidth capacity design. For this purpose, this paper developed a fuzzy methodology for network bandwidth design under demand uncertainty. This methodology is usually used for offiine traffic engineering optimization, which takes a centralized view of bandwidth design, resource utilization, and performance evaluation. In this proposed methodology, uncertain traffic demands are first handled into a fuzzy number via a fuzzification method. Then a fuzzy optimization model for the network bandwidth allocation problem is formulated with the consideration of the trade-off between resource utilization and network performance. Accordingly, the optimal network bandwidth capacity can be obtained by maximizing network revenue in CNs. Finally, an illustrative numerical example is presented for the purpose of verification.
基金supported by the National Natural Science Foundation of China (Grant Nos. 71071016, 70901005)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009JBM040 and 2009JBZ012)funded by a Discovery Grant (Application No. 342485-07) from the Natural Science and Engineering Research Council (NSERC), Canada
文摘In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then developed to formulate optimization problem for such a system.Simultaneously,the main factors,such as travel time,pricing and convenience which influence travelers' choice behaviors are all considered and a combined assignment model is proposed to simulate travelers' mode and route choices.A bi-level programming model,in which the multi-objective optimization model is treated as the upper-level problem and the combined assignment model is processed as the lower-level problem,is then presented to solve multi-criterion system optimization problem for urban multimodal traffic network.The solution algorithms of the proposed models are also presented.Finally,the model and its algorithms are illustrated through a simple numerical example.