为研究不同类型车辆组成的混合交通流的运行模式,假定无人驾驶车辆、先进出行者出行系统(advanced traveler information systems,ATIS)装置车辆和普通驾驶车辆分别遵从系统最优模式、用户均衡模式、随机用户均衡模式选择路径,分别建立...为研究不同类型车辆组成的混合交通流的运行模式,假定无人驾驶车辆、先进出行者出行系统(advanced traveler information systems,ATIS)装置车辆和普通驾驶车辆分别遵从系统最优模式、用户均衡模式、随机用户均衡模式选择路径,分别建立普通车道、专用车道模式下的交通分配模型,给出求解模型的连续平均算法(method of successive averages,MSA)。通过算例确定路段通行能力,分析信息质量水平、出行需求量、市场渗透率对出行时间的影响,在确定模型各项参数取值的基础上,根据专用车道设置情况对混合均衡流状态进行研究,验证模型算法的可行性和收敛性。研究结果表明:通行能力随着行驶速度的增加先提高后下降,选择合适的行驶速度将提高路段通行能力,且无人驾驶专用道的通行能力明显高于普通车道;适当提高信息质量水平,可降低路径选择的随机性,有效减少平均出行时间;随着出行需求量的增加,平均出行时间逐渐提高,其中系统最优模式(无人驾驶专用道)的平均出行时间最小;根据市场渗透率的变化情况选择合适的车道配置模式,既能提高道路资源的使用效率,又能减少出行者的出行成本;不同车道配置模式下的混合交通流均随着迭代次数的增加逐渐达到稳定状态;当无人驾驶车辆的市场渗透率较高时,设置无人驾驶专用道将缩短行驶时间,提高运行效率。展开更多
In order to develop optimal multi-regime traffic stream models, a new method that integrates cluster analysis and B-spline regression is presented. First, for identifying the proper number of regimes, the K-means and ...In order to develop optimal multi-regime traffic stream models, a new method that integrates cluster analysis and B-spline regression is presented. First, for identifying the proper number of regimes, the K-means and the fuzzy c-means methods are applied in cluster analysis to actual traffic data, which suggests that dividing the traffic flow into two or three clusters can best reflect intrinsic patterns of traffic flows. Such information is then taken as guidance in spline regression, thus significantly reducing the computational burden of estimating spline models. Spline regression is used to estimate the locations of knots and the coefficients of the model so that the global error can be minimized. Model analysis results demonstrate that the proposed spline models have better fitting and generalization capability than the conventional models. In addition, the new method is more flexible in terms of data fitting and can provide smoother traffic stream models.展开更多
文摘为研究不同类型车辆组成的混合交通流的运行模式,假定无人驾驶车辆、先进出行者出行系统(advanced traveler information systems,ATIS)装置车辆和普通驾驶车辆分别遵从系统最优模式、用户均衡模式、随机用户均衡模式选择路径,分别建立普通车道、专用车道模式下的交通分配模型,给出求解模型的连续平均算法(method of successive averages,MSA)。通过算例确定路段通行能力,分析信息质量水平、出行需求量、市场渗透率对出行时间的影响,在确定模型各项参数取值的基础上,根据专用车道设置情况对混合均衡流状态进行研究,验证模型算法的可行性和收敛性。研究结果表明:通行能力随着行驶速度的增加先提高后下降,选择合适的行驶速度将提高路段通行能力,且无人驾驶专用道的通行能力明显高于普通车道;适当提高信息质量水平,可降低路径选择的随机性,有效减少平均出行时间;随着出行需求量的增加,平均出行时间逐渐提高,其中系统最优模式(无人驾驶专用道)的平均出行时间最小;根据市场渗透率的变化情况选择合适的车道配置模式,既能提高道路资源的使用效率,又能减少出行者的出行成本;不同车道配置模式下的混合交通流均随着迭代次数的增加逐渐达到稳定状态;当无人驾驶车辆的市场渗透率较高时,设置无人驾驶专用道将缩短行驶时间,提高运行效率。
基金The US National Science Foundation (No.BCS-0527508)
文摘In order to develop optimal multi-regime traffic stream models, a new method that integrates cluster analysis and B-spline regression is presented. First, for identifying the proper number of regimes, the K-means and the fuzzy c-means methods are applied in cluster analysis to actual traffic data, which suggests that dividing the traffic flow into two or three clusters can best reflect intrinsic patterns of traffic flows. Such information is then taken as guidance in spline regression, thus significantly reducing the computational burden of estimating spline models. Spline regression is used to estimate the locations of knots and the coefficients of the model so that the global error can be minimized. Model analysis results demonstrate that the proposed spline models have better fitting and generalization capability than the conventional models. In addition, the new method is more flexible in terms of data fitting and can provide smoother traffic stream models.