This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of c...This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed.展开更多
In real-life freeway transportation system, a few number of incident observation (very rare event) is available while there are large numbers of normal condition dataset. Most of researches on freeway incident detec...In real-life freeway transportation system, a few number of incident observation (very rare event) is available while there are large numbers of normal condition dataset. Most of researches on freeway incident detection have considered the incident detection problem as classification one. However, because of insufficiency of incident events, most of previous researches have utilized simulated incident events to develop freeway incident detection models. In order to overcome this drawback, this paper proposes a wavelet-based Hotelling 7a control chart for freeway incident detection, which integrates a wavelet transform into an abnormal detection method. Firstly, wavelet transform extracts useful features from noisy original traffic observations, leading to reduce the dimensionality of input vectors. Then, a Hotelling T2 control chart describes a decision boundary with only normal traffic observations with the selected features in the wavelet domain. Unlike the existing incident detection algorithms, which require lots of incident observations to construct incident detection models, the proposed approach can decide a decision boundary given only normal training observations. The proposed method is evaluated in comparison with California algorithm, Minnesota algorithm and conventional neural networks. The experimental results present that the proposed algorithm in this paper is a promising alternative for freeway automatic incident detections.展开更多
文摘This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed.
文摘In real-life freeway transportation system, a few number of incident observation (very rare event) is available while there are large numbers of normal condition dataset. Most of researches on freeway incident detection have considered the incident detection problem as classification one. However, because of insufficiency of incident events, most of previous researches have utilized simulated incident events to develop freeway incident detection models. In order to overcome this drawback, this paper proposes a wavelet-based Hotelling 7a control chart for freeway incident detection, which integrates a wavelet transform into an abnormal detection method. Firstly, wavelet transform extracts useful features from noisy original traffic observations, leading to reduce the dimensionality of input vectors. Then, a Hotelling T2 control chart describes a decision boundary with only normal traffic observations with the selected features in the wavelet domain. Unlike the existing incident detection algorithms, which require lots of incident observations to construct incident detection models, the proposed approach can decide a decision boundary given only normal training observations. The proposed method is evaluated in comparison with California algorithm, Minnesota algorithm and conventional neural networks. The experimental results present that the proposed algorithm in this paper is a promising alternative for freeway automatic incident detections.