Based on the theory of non-equilibrium thermodynamics, considering the dynamic effect of molecular diffusion and the change in thermodynamic parameters caused by wax precipitation, the phenomenological relations of di...Based on the theory of non-equilibrium thermodynamics, considering the dynamic effect of molecular diffusion and the change in thermodynamic parameters caused by wax precipitation, the phenomenological relations of different thermodynamic "force" and "flow" interactions were derived. The corresponding thermodynamic model of a waxy crude oil pipeline transportation system was built, and then, the excess entropy production expression was proposed. Furthermore, the stability criterion model of the pipeline transportation system was established on the basis of Lyapounov stability theory. Taking the oil pipeline in Daqing oilfield as an example, based on the four parameters of out-station temperature, out-station pressure, flow rate and water content, the stable and unstable regions of the system were divided, and the formation mechanisms of the two different regions were analyzed. The experimental loop device of wax deposition rate was designed, and then, the wax deposition rate under the four parameters was measured. The results showed that the stable region of the wax deposition rate fluctuation was basically in accordance with the stability region analyzed by the criterion model established in this paper, which proved that the stability criterion model was feasible for analyzing the stability of the waxy crude oil pipeline transportation process.展开更多
基金financially supported by the National Natural Science Foundation of China (51534004)the Northeast Petroleum University “National Fund” Cultivation Fund (2017PYZL-07)
文摘Based on the theory of non-equilibrium thermodynamics, considering the dynamic effect of molecular diffusion and the change in thermodynamic parameters caused by wax precipitation, the phenomenological relations of different thermodynamic "force" and "flow" interactions were derived. The corresponding thermodynamic model of a waxy crude oil pipeline transportation system was built, and then, the excess entropy production expression was proposed. Furthermore, the stability criterion model of the pipeline transportation system was established on the basis of Lyapounov stability theory. Taking the oil pipeline in Daqing oilfield as an example, based on the four parameters of out-station temperature, out-station pressure, flow rate and water content, the stable and unstable regions of the system were divided, and the formation mechanisms of the two different regions were analyzed. The experimental loop device of wax deposition rate was designed, and then, the wax deposition rate under the four parameters was measured. The results showed that the stable region of the wax deposition rate fluctuation was basically in accordance with the stability region analyzed by the criterion model established in this paper, which proved that the stability criterion model was feasible for analyzing the stability of the waxy crude oil pipeline transportation process.