期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于零树小波的交通视频车辆运动阴影滤除方法 被引量:4
1
作者 王相海 王凯 +2 位作者 刘美瑶 苏元贺 宋传鸣 《模式识别与人工智能》 EI CSCD 北大核心 2016年第12期1104-1113,共10页
基于高斯模型的背景建模方法与简单的背景差分方法很难准确区分运动车辆与阴影.基于此种原因,文中提出基于零树小波的交通视频车辆运动阴影滤除方法.首先将含有噪声的运动前景图像转换至HSV颜色空间.然后对S通道和V通道进行多级下采样... 基于高斯模型的背景建模方法与简单的背景差分方法很难准确区分运动车辆与阴影.基于此种原因,文中提出基于零树小波的交通视频车辆运动阴影滤除方法.首先将含有噪声的运动前景图像转换至HSV颜色空间.然后对S通道和V通道进行多级下采样小波变换,通过构造运动前景的零树小波掩模,关联不同尺度子带间的系数,使各精细尺度子带掩模的值能得到父子带系数的指导和校正,提高子带自适应阈值的准确性.进一步通过结合阴影的颜色特征,提高判断区域车辆与阴影的区分度.最后通过大量仿真实验验证文中方法的有效性. 展开更多
关键词 交通视频车辆 阴影滤除 零树小波掩模 多尺度子带 自适应阈值
下载PDF
道路交通视频的车辆跟踪算法 被引量:1
2
作者 郭锋 王秉政 陈燕 《郑州轻工业学院学报(自然科学版)》 CAS 2012年第3期74-76,共3页
针对现有车辆跟踪算法准确率不太高的问题,结合具体的道路交通视频的特点,提出了一种车辆跟踪算法.该算法通过道路车辆行驶运动规律,在设计的预测区域内进行搜索,并根据车辆形心、颜色等特征进行匹配和跟踪.实验结果表明,该算法在满足... 针对现有车辆跟踪算法准确率不太高的问题,结合具体的道路交通视频的特点,提出了一种车辆跟踪算法.该算法通过道路车辆行驶运动规律,在设计的预测区域内进行搜索,并根据车辆形心、颜色等特征进行匹配和跟踪.实验结果表明,该算法在满足实时性的要求下,具有较好的稳定性和较高的准确率. 展开更多
关键词 道路交通视频车辆跟踪算法 车体形心 基于区域的目标跟踪
下载PDF
Length-Based Vehicle Classification in Multi-lane Traffic Flow 被引量:1
3
作者 于洋 于明 +1 位作者 阎刚 翟艳东 《Transactions of Tianjin University》 EI CAS 2011年第5期362-368,共7页
For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated back... For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated background and current frame is obtained by using background subtraction, and then an edge-based shadow removal algorithm is implemented. Moreover, a tbresholding segmentation method for the region detection of moving vehicle based on lo- cation search is developed. At the estimation stage, a registration line is set up in the detection area, then the vehicle length is estimated with the horizontal projection technique as soon as the vehicle leaves the registration line. Lastly, the vehicle is classified according to its length and the classification threshold. The proposed method is different from traditional methods that require complex camera calibrations. It calculates the pixel-based vehicle length by using uncalibrated traffic video sequences at lower computational cost. Furthermore, only one registration line is set up, which has high flexibility. Experimental results of three traffic video sequences show that the classification accuracies for the large and small vehicles are 97.1% and 96.7% respectively, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 image processing background subtraction vehicle classification virtual line horizontal projection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部