期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于灰色⁃广义回归神经网络模型的城市群交通运输能力预测 被引量:3
1
作者 王亦虹 李雅萱 +1 位作者 田平野 罗久刚 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第8期8-16,共9页
城市群交通运输能力是构建国家综合立体交通网的战略基石。鉴于传统预测方法难以适应城市群交通运输能力影响因素众多且存在时变、耦合、不确定性强等特征,提出了一种灰色-广义回归神经网络的复合模型,以预测未来城市群交通运输能力。首... 城市群交通运输能力是构建国家综合立体交通网的战略基石。鉴于传统预测方法难以适应城市群交通运输能力影响因素众多且存在时变、耦合、不确定性强等特征,提出了一种灰色-广义回归神经网络的复合模型,以预测未来城市群交通运输能力。首先,选用LASSO算法筛选主要影响变量来降低数据复杂度,运用GM(1,1)模型弱化数据序列的随机性,预测影响变量时间序列的变化趋势,并填补数据缺失。然后,以20002019年京津冀城市群的数据集训练GRNN模型,根据GM(1,1)模型预测出的20202025年城市群交通运输能力影响因素,得出未来年份交通运输能力动态趋势。结果表明,复合预测模型精度优于传统方法,有效减少了小样本预测的不确定性。最后,结合预测结果分析了京津冀城市群核心区位城市的发展方向,为助力构建以城市群为重要抓手的新发展格局进行了前瞻性探讨。 展开更多
关键词 交通运输工程 城市群 灰色-广义回归神经网络模型 交通运输能力预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部