The term 'assortative mating' has been applied to describe two very different phenomena: (1) the tendency for indi- viduals to choose phenotypically similar mates from among conspecifics; or (2) the tendency to...The term 'assortative mating' has been applied to describe two very different phenomena: (1) the tendency for indi- viduals to choose phenotypically similar mates from among conspecifics; or (2) the tendency to prefer conspecific over hete- rospecific mates (behavioral reproductive isolation). Both forms of assortative mating are widespread in nature, but the relation- ship between these behaviors remains unclear. Namely, it is plausible that a preference for phenotypically similar conspecifics in cidentally reduces the probability of mating with phenotypically divergent heterospecifics. We present a model to calculate how the level of reproductive isolation depends on intraspecific assortative mating and the phenotypic divergence between species. For empirically reasonable levels of intraspecific assortment on a single trait axis, we show that strong reproductive isolation requires very substantial phenotypic divergence. We illustrate this point by applying our model to empirical data from threespine stickleback Gasterosteus aculeatus and Darwin's Finches (Geospiza spp). We conclude that typical levels of intraspecific assortment cannot generally be extrapolated to explain levels of interspecific reproductive isolation. Instead, reproductive isolation between species likely arises from different mate choice behaviors, or multivariate assortative mating [Current Zoology 58 (3): 484-492, 2012].展开更多
Sexual imprinting is a common mechanism of mate preference learning. It is thought to influence how traits evolve and in some cases to promote speciation. Recently there has been increasing interest in how sexual impr...Sexual imprinting is a common mechanism of mate preference learning. It is thought to influence how traits evolve and in some cases to promote speciation. Recently there has been increasing interest in how sexual imprinting itself evolves. Theoretical work on polygynous mating systems predicts that females will evolve paternal imprinting, which means they learn to prefer phenotypes expressed by their fathers. In nature however, females of some species learn to prefer phenotypes expressed by their mothers instead. We used a dynamical systems model and tools from adaptive dynamics to study how sexual imprinting evolves in species with socially monogamous mating systems. We considered cases in which the target trait for imprinting is un- der viability selection but is not a reliable signal of paternal investment. Thus, the target trait signals the genetic benefits rather than the parental care benefits of mate choice. When mating is socially monogamous and there is some extra-pair patemity, we show that maternal imprinting can be favored over paternal imprinting. Counterintuitively, females often become choosier when selecting social partners in systems where extra-pair mating is more frequent. That is, females may be more selective when choosing social partners that will sire a smaller percentage of their offspring. Our results offer new testable hypotheses, and ad- vance our understanding of the mechanisms that drive the evolution of mate choice strategies in nature .展开更多
文摘The term 'assortative mating' has been applied to describe two very different phenomena: (1) the tendency for indi- viduals to choose phenotypically similar mates from among conspecifics; or (2) the tendency to prefer conspecific over hete- rospecific mates (behavioral reproductive isolation). Both forms of assortative mating are widespread in nature, but the relation- ship between these behaviors remains unclear. Namely, it is plausible that a preference for phenotypically similar conspecifics in cidentally reduces the probability of mating with phenotypically divergent heterospecifics. We present a model to calculate how the level of reproductive isolation depends on intraspecific assortative mating and the phenotypic divergence between species. For empirically reasonable levels of intraspecific assortment on a single trait axis, we show that strong reproductive isolation requires very substantial phenotypic divergence. We illustrate this point by applying our model to empirical data from threespine stickleback Gasterosteus aculeatus and Darwin's Finches (Geospiza spp). We conclude that typical levels of intraspecific assortment cannot generally be extrapolated to explain levels of interspecific reproductive isolation. Instead, reproductive isolation between species likely arises from different mate choice behaviors, or multivariate assortative mating [Current Zoology 58 (3): 484-492, 2012].
文摘Sexual imprinting is a common mechanism of mate preference learning. It is thought to influence how traits evolve and in some cases to promote speciation. Recently there has been increasing interest in how sexual imprinting itself evolves. Theoretical work on polygynous mating systems predicts that females will evolve paternal imprinting, which means they learn to prefer phenotypes expressed by their fathers. In nature however, females of some species learn to prefer phenotypes expressed by their mothers instead. We used a dynamical systems model and tools from adaptive dynamics to study how sexual imprinting evolves in species with socially monogamous mating systems. We considered cases in which the target trait for imprinting is un- der viability selection but is not a reliable signal of paternal investment. Thus, the target trait signals the genetic benefits rather than the parental care benefits of mate choice. When mating is socially monogamous and there is some extra-pair patemity, we show that maternal imprinting can be favored over paternal imprinting. Counterintuitively, females often become choosier when selecting social partners in systems where extra-pair mating is more frequent. That is, females may be more selective when choosing social partners that will sire a smaller percentage of their offspring. Our results offer new testable hypotheses, and ad- vance our understanding of the mechanisms that drive the evolution of mate choice strategies in nature .