The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition o...The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County展开更多
The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune an...The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune and interdune deposits.In the dunes,large-scale festoon cross-bedding,humped cross-bedding and high-angle foreset bedding are well developed,and in the interdunes,large-scale flat-bedding and low-angle wedge shaped cross-bedding are well developed.The sedimentary structures and lamella features indicate that the aeolian deposits are driven mainly by the northeast monsoon.The aeolian biocalcarenite and paleosols may reflect the arid and humid climates of the East Asian monsoon,respectively.By comparison with the stalagmite oxygen isotope climosequence of Hulu Cave,Nanjing,we inferred that the aeolianite formed in the last glacial stage,and the paleosols were formed during relatively long-term warm events.展开更多
基金Under the auspices of Special Major Science and Technology Projects in Xinjiang Uygur Autonomous Region(No.201130106-1)Public Sector(Meteorology)Research Project(No.GYHY201106025)Doctoral Station Supporting Foundation for Geography of Xinjiang Normal University and Open Project of Xinjiang Lake Environment and Resources Key Laboratory of Arid Zone(No.XJDX0909-2013-08)
文摘The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County
基金Supported by the National Basic Research Program of China (973 Program) (No. 2009CB219406)the Knowledge Innovation Program of CAS (KZCX2-YW-229)National Science & Technology Major Project (No. 2008zx05025-003-03)
文摘The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune and interdune deposits.In the dunes,large-scale festoon cross-bedding,humped cross-bedding and high-angle foreset bedding are well developed,and in the interdunes,large-scale flat-bedding and low-angle wedge shaped cross-bedding are well developed.The sedimentary structures and lamella features indicate that the aeolian deposits are driven mainly by the northeast monsoon.The aeolian biocalcarenite and paleosols may reflect the arid and humid climates of the East Asian monsoon,respectively.By comparison with the stalagmite oxygen isotope climosequence of Hulu Cave,Nanjing,we inferred that the aeolianite formed in the last glacial stage,and the paleosols were formed during relatively long-term warm events.