Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi...Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.展开更多
A new feeding mode for a simulated moving bed(SMB) is proposed.The outlet stream from zone II is collected at regular intervals.The concentration of the solution is increased by dissolving raw materials and then fed t...A new feeding mode for a simulated moving bed(SMB) is proposed.The outlet stream from zone II is collected at regular intervals.The concentration of the solution is increased by dissolving raw materials and then fed to zone III as the feed stream during the next collection interval.In this feeding mode,the concentration of the stream fed to zone III is identical to that of original feed,while in a conventional SMB,the feed is diluted by mix-ing with the outlet stream of zone II before feeding to zone III.The new feeding mode increases the inlet concentra-tion of zone III.A modeling investigation shows that higher inlet concentration of zone III increases the height of concentration band in SMB,improving the separation performance significantly.In comparison with the traditonal feeding mode,the new feeding mode increases the productivity by 23.52%and decreases the solvent consumption by 22.56%,so as to increase the raffinate and extract concentrations by 53.17%and 20.38%,respectively.The col-lection interval for the outlet stream from zone II has no effect on the separation performance after reaching the steady state,so that the collection interval can be increased to make the operation more convenient.展开更多
基金Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
文摘Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.
基金Supported by the Natural Science Foundation of Ningbo(2009A610153)
文摘A new feeding mode for a simulated moving bed(SMB) is proposed.The outlet stream from zone II is collected at regular intervals.The concentration of the solution is increased by dissolving raw materials and then fed to zone III as the feed stream during the next collection interval.In this feeding mode,the concentration of the stream fed to zone III is identical to that of original feed,while in a conventional SMB,the feed is diluted by mix-ing with the outlet stream of zone II before feeding to zone III.The new feeding mode increases the inlet concentra-tion of zone III.A modeling investigation shows that higher inlet concentration of zone III increases the height of concentration band in SMB,improving the separation performance significantly.In comparison with the traditonal feeding mode,the new feeding mode increases the productivity by 23.52%and decreases the solvent consumption by 22.56%,so as to increase the raffinate and extract concentrations by 53.17%and 20.38%,respectively.The col-lection interval for the outlet stream from zone II has no effect on the separation performance after reaching the steady state,so that the collection interval can be increased to make the operation more convenient.