An ultra-highly precise and long-term stable frequency transmission system over 120 km commercial fiber link has been proposed and experimentally demonstrated. This system is based on digital output compensation techn...An ultra-highly precise and long-term stable frequency transmission system over 120 km commercial fiber link has been proposed and experimentally demonstrated. This system is based on digital output compensation technique to suppress phase fluctuations during the frequency transmission process. A mode-locked erbium-doped fiber laser driven by a hydrogen maser serves as an optical transmitter. Moreover, a dense wavelength division multiplexing system is able to separate forward and backward signals with reflection effect excluded. The ultimate fractional frequency instabilities for the long-distance frequency distributed system are up to 3.14×10^(-15) at 1 s and 2.96×10^(-19) at 10 000 s, respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61571244 and 61501262)the Science and Technology Project of Tianjin(No.16YFZCSF00540)the Natural Science Foundation of Tianjin(No.15JCYBJC51600)
文摘An ultra-highly precise and long-term stable frequency transmission system over 120 km commercial fiber link has been proposed and experimentally demonstrated. This system is based on digital output compensation technique to suppress phase fluctuations during the frequency transmission process. A mode-locked erbium-doped fiber laser driven by a hydrogen maser serves as an optical transmitter. Moreover, a dense wavelength division multiplexing system is able to separate forward and backward signals with reflection effect excluded. The ultimate fractional frequency instabilities for the long-distance frequency distributed system are up to 3.14×10^(-15) at 1 s and 2.96×10^(-19) at 10 000 s, respectively.