By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2...By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2Q, √2iP)::, the introduction of two-variable Hermite polynomial Hm,r brings much convenience to the study of Weyl correspondence.展开更多
基金Supported by the President Foundation of Chinese Academy of Scienceby the Specialized Research Fund for the Doctorial Progress of Higher Education of China
文摘By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2Q, √2iP)::, the introduction of two-variable Hermite polynomial Hm,r brings much convenience to the study of Weyl correspondence.