Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new product...Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new products or to some specified level. To make warranty cost models more suitable to real operations, a modeling method of the PM warranty cost was proposed with the situation where each PM operation slowed the rate of product degradation. A warranty cost model was built on PM operations. On the basis of the cost model, both without and with reliability limit PM warranty policy, algorithms were presented to derive the optimal PM number and the optimal PM interval with an objective of minimizing expected total warranty cost over a t'mite warranty period. Finally, to demonstrate the feasibility of the presented modeling method, Weibuil distribution cases were tested by numerical simulations. The simulation results indicate that the proposed modeling method is feasible and valid for resolving the optimal solution of the product warranty cost.展开更多
Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent...Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D α-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eVo The simulated electrical resistivity is as low as 10^-4 Ω.cm, comparable to the benchmark for ITO thin films.展开更多
基金National Natural Science Foundation of China(No.60574054No.70771065No.70671065)
文摘Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new products or to some specified level. To make warranty cost models more suitable to real operations, a modeling method of the PM warranty cost was proposed with the situation where each PM operation slowed the rate of product degradation. A warranty cost model was built on PM operations. On the basis of the cost model, both without and with reliability limit PM warranty policy, algorithms were presented to derive the optimal PM number and the optimal PM interval with an objective of minimizing expected total warranty cost over a t'mite warranty period. Finally, to demonstrate the feasibility of the presented modeling method, Weibuil distribution cases were tested by numerical simulations. The simulation results indicate that the proposed modeling method is feasible and valid for resolving the optimal solution of the product warranty cost.
基金This work was financially supported by National University of Singapore, Ministry of Education of Singapore, Ministry of Defence of Singapore, National Research Foundation of Singapore and National Natural Science Foundation of China (Nos. 21233006 and 21473164).
文摘Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D α-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eVo The simulated electrical resistivity is as low as 10^-4 Ω.cm, comparable to the benchmark for ITO thin films.