[Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close plantin...[Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close planting of dwarf rootstock apples.[Method] The technical parameters of individual trees and group parameters as shoot number and composition and canopy coverage were determined, and the light quality in the canopy, fruit production and quality were investigated. [Result] Slender spindle (SS) orchard has 54 thousands shoots per 667 m^2. Coverage rate is 76%. Leaf area index is 1.9. The ratio of long, medium and spur shoots is 1:1:8. Fruit yield is 3 263 kg/667 m^2 with 85% first grade fruit. Light interception in the canopy is 58% while the ratio of canopy with good light is 65%. Modified slender spindle (MSS) orchard has 93 thousands shoots per 667 m^2 and the coverage is 77%. Leaf area index is 3.3. The ratio cf long, medium and spur shoots is 1:2:7. Fruit yield is 3 931 kg/667 m^2 with 85% first grade fruit. The light interception in the canopy is 73% while the ratio of canopy with good light is 35%. [Conclusion] Apple orchard with M26 dwarf rootstock trained as SS and MSS tree form in medium planting density may be useful to the management of the similar orchards in Central China.展开更多
The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning...The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning electron microscopy after being immersed in different concentrations of H2O2 for 112 h. Surface corrosion products of Ni-Cr alloys were analyzed by photoelectron spectrograph after being immersed in 0% and 30% H2O2. The order of increasing surface roughness of Ni-Cr alloys after being immersed in different concentrations of H2O2 was 0〈3.6%〈10%〈30%. As the concentration of hydrogen peroxide increased, the surface roughness of Ni-Cr alloys increased and the surface morphology showed different degrees of corrosion. According to the XPS results, the corrosion products formed on the outmost surface layer of the studied samples are Ni(OH)2 and BeO.展开更多
Electrocatalytic CO_(2) conversion has been considered as a promising way to recycle CO_(2) and produce sustainable fuels and chemicals.However,the efficient and highly selective electrochemical reduction of CO_(2) di...Electrocatalytic CO_(2) conversion has been considered as a promising way to recycle CO_(2) and produce sustainable fuels and chemicals.However,the efficient and highly selective electrochemical reduction of CO_(2) directly into multi‐carbon(C_(2+))products remains a great challenge.Herein,we synthesized three type catalysts with different morphologies based on Cu_(2)O nanowires,and studied their morphology and crystal facet reconstruction during the pre‐reduction process.Benefiting from abundant exposure of Cu(100)crystal facet,the nanosheet structure derived Cu catalyst showed a high faradaic efficiency(FE)of 67.5%for C_(2+)products.Additionally,electrocatalytic CO_(2) reduction studies were carried out on Cu(100),Cu(110),and Cu(111)single crystal electrodes,which verified that Cu(100)crystal facets are favorable for the C_(2+)products in electrocatalytic CO_(2) reduction.Our work showed that catalysts would reconstruct during the CO_(2) reduction process and the importance in morphology and crystal facet control to obtain desired products.展开更多
In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output,TiO2 nanotube array bio-anodes(TNA)are synthesized at different electrolyte temperatures,thereby ...In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output,TiO2 nanotube array bio-anodes(TNA)are synthesized at different electrolyte temperatures,thereby changing the length and surface roughness of the nanotubes.When the anodizing temperature is increased from 30 to 75℃,the length of the nanotubes increases from 1.459 to 4.183μm,which hinders the transfer of extracellular electrons to the electrodes.On the other hand,the surface roughness of TNA is significantly improved at higher temperatures,which is conducive to electron transfer.Therefore,samples processed at 45℃have the best current output performance.Compared with the treatment at 30℃under anodization,samples processed at 45℃can balance the resistance and roughness and have a higher electron transfer rate;the current output density of which is increased by 1.5 times,and the decolorization rate is increased by 0.8 times.Therefore,proper TNA surface morphology can improve the current output and the potential of wastewater treatment.展开更多
"Riding mining" is a form of mining where the working face is located above the roadway and advances parallel to it.Riding mining in deep soft rock creates a particular set of problems in the roadway that in..."Riding mining" is a form of mining where the working face is located above the roadway and advances parallel to it.Riding mining in deep soft rock creates a particular set of problems in the roadway that include high stresses,large deformations,and support difficulties.Herein we describe a study of the rock deformation mechanism of a roadway as observed during riding mining in deep soft rock.Theoretical analysis,numerical simulations,and on site monitoring were used to examine this problem.The stress in the rock and the visco-elastic behavior of the rock are considered.Real time data,recorded over a period of 240 days,were taken from a 750 transportation roadway.Stress distributions in the rock surrounding the roadway were studied by comparing simulations to observations from the mine.The rock stress shows dynamic behavior as the working face advances.The pressure increases and then drops after peaking as the face advances.Both elastic and plastic deformation of the surrounding rock occurs.Plastic deformation provides a mechanism by which stress in the rock relaxes due to material flow.A way to rehabilitate the roadway is suggested that will help ensure mine safety.展开更多
基金Supported by National Apple Industry Programs of Ministry of Agriculture(CARS-28)~~
文摘[Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close planting of dwarf rootstock apples.[Method] The technical parameters of individual trees and group parameters as shoot number and composition and canopy coverage were determined, and the light quality in the canopy, fruit production and quality were investigated. [Result] Slender spindle (SS) orchard has 54 thousands shoots per 667 m^2. Coverage rate is 76%. Leaf area index is 1.9. The ratio of long, medium and spur shoots is 1:1:8. Fruit yield is 3 263 kg/667 m^2 with 85% first grade fruit. Light interception in the canopy is 58% while the ratio of canopy with good light is 65%. Modified slender spindle (MSS) orchard has 93 thousands shoots per 667 m^2 and the coverage is 77%. Leaf area index is 3.3. The ratio cf long, medium and spur shoots is 1:2:7. Fruit yield is 3 931 kg/667 m^2 with 85% first grade fruit. The light interception in the canopy is 73% while the ratio of canopy with good light is 35%. [Conclusion] Apple orchard with M26 dwarf rootstock trained as SS and MSS tree form in medium planting density may be useful to the management of the similar orchards in Central China.
基金Projects(13ZR1427700,13ZR1427900)supported by the Natural Science Foundation of Shanghai,ChinaProject(51304136)supported by the National Natural Science Foundation of ChinaProjects(Slgl4049,Slgl4050)supported by the Shanghai Education Development Foundation"Selection and Training the Excellent Young College Teacher"Project,China
文摘The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning electron microscopy after being immersed in different concentrations of H2O2 for 112 h. Surface corrosion products of Ni-Cr alloys were analyzed by photoelectron spectrograph after being immersed in 0% and 30% H2O2. The order of increasing surface roughness of Ni-Cr alloys after being immersed in different concentrations of H2O2 was 0〈3.6%〈10%〈30%. As the concentration of hydrogen peroxide increased, the surface roughness of Ni-Cr alloys increased and the surface morphology showed different degrees of corrosion. According to the XPS results, the corrosion products formed on the outmost surface layer of the studied samples are Ni(OH)2 and BeO.
文摘Electrocatalytic CO_(2) conversion has been considered as a promising way to recycle CO_(2) and produce sustainable fuels and chemicals.However,the efficient and highly selective electrochemical reduction of CO_(2) directly into multi‐carbon(C_(2+))products remains a great challenge.Herein,we synthesized three type catalysts with different morphologies based on Cu_(2)O nanowires,and studied their morphology and crystal facet reconstruction during the pre‐reduction process.Benefiting from abundant exposure of Cu(100)crystal facet,the nanosheet structure derived Cu catalyst showed a high faradaic efficiency(FE)of 67.5%for C_(2+)products.Additionally,electrocatalytic CO_(2) reduction studies were carried out on Cu(100),Cu(110),and Cu(111)single crystal electrodes,which verified that Cu(100)crystal facets are favorable for the C_(2+)products in electrocatalytic CO_(2) reduction.Our work showed that catalysts would reconstruct during the CO_(2) reduction process and the importance in morphology and crystal facet control to obtain desired products.
基金The National Major Science and Technology Project(No.2017ZX07202004-005)the Natural Science Foundation of Jiangsu Province(No.BK20171351)+2 种基金the Japan Society for the Promotion of Science(No.P 19056)the National Natural Science Foundation of China(No.51828801)the Fundamental Research Funds for the Central Universities(No.2242016K41042)。
文摘In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output,TiO2 nanotube array bio-anodes(TNA)are synthesized at different electrolyte temperatures,thereby changing the length and surface roughness of the nanotubes.When the anodizing temperature is increased from 30 to 75℃,the length of the nanotubes increases from 1.459 to 4.183μm,which hinders the transfer of extracellular electrons to the electrodes.On the other hand,the surface roughness of TNA is significantly improved at higher temperatures,which is conducive to electron transfer.Therefore,samples processed at 45℃have the best current output performance.Compared with the treatment at 30℃under anodization,samples processed at 45℃can balance the resistance and roughness and have a higher electron transfer rate;the current output density of which is increased by 1.5 times,and the decolorization rate is increased by 0.8 times.Therefore,proper TNA surface morphology can improve the current output and the potential of wastewater treatment.
基金Supported by the National Natural Science Foundation of China (Nos. 50834005 and 51074163)the Ministry of Education Support Program for New Century Excellent of China(No. NCET-08-0837)+1 种基金the Fundamental Research Funds for the Central Universities of ChinaYouth Science and Technology Foundation of China University of Mining and Technology(No. 2010QNB25)
文摘"Riding mining" is a form of mining where the working face is located above the roadway and advances parallel to it.Riding mining in deep soft rock creates a particular set of problems in the roadway that include high stresses,large deformations,and support difficulties.Herein we describe a study of the rock deformation mechanism of a roadway as observed during riding mining in deep soft rock.Theoretical analysis,numerical simulations,and on site monitoring were used to examine this problem.The stress in the rock and the visco-elastic behavior of the rock are considered.Real time data,recorded over a period of 240 days,were taken from a 750 transportation roadway.Stress distributions in the rock surrounding the roadway were studied by comparing simulations to observations from the mine.The rock stress shows dynamic behavior as the working face advances.The pressure increases and then drops after peaking as the face advances.Both elastic and plastic deformation of the surrounding rock occurs.Plastic deformation provides a mechanism by which stress in the rock relaxes due to material flow.A way to rehabilitate the roadway is suggested that will help ensure mine safety.