Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification react...Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.展开更多
Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics.To increase the oxytetracycline(OTC) production in Streptomyces rimosus,we investigated the coope...Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics.To increase the oxytetracycline(OTC) production in Streptomyces rimosus,we investigated the cooperative effect of three co-overexpressing OTC resistance genes:one gene encodes a ribosomal protection protein(otrA) and the other two express efflux proteins(otrB and otrC).Results indicated that combinational overexpression of otrA,otrB,and otrC(MKABC) exerted a synergetic effect.OTC production increased by 179%in the recombinant strain compared with that of the wild-type strain M4018.The resistance level to OTC was increased by approximately two-fold relative to the parental strain,thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production.Furthermore,the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC;such strain can produce OTC of approximately7.49 g L^((-1)),which represents an increase of 19%in comparison with that of the OtcR-overexpressing strain alone.Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.展开更多
Genetic modification of large DNA fragments(gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase ...Genetic modification of large DNA fragments(gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase their value and productivity.In this study,we developed a method for scarless and precise modification of large gene clusters by using RecET/RED-mediated polymerase chain reaction(PCR) targeting combined with Gibson assembly.In this strategy,the biosynthetic genes for peptidyl moieties(HPHT) in the nikkomycin biosynthetic gene cluster were replaced with those for carbamoylpolyoxamic acid(CPOAA)from the polyoxin biosynthetic gene cluster to generate a^40 kb hybrid gene cluster in Escherichia coli with a reusable targeting cassette.The reconstructed cluster was introduced into Streptomyces lividans TK23 for heterologous expression and the expected hybrid antibiotic,polynik A,was obtained and verified.This study provides an efficient strategy for gene cluster reconstruction and modification that could be applied in synthetic biology and combinatory biosynthesis to synthesize novel bioactive metabolites or to improve antibiotic production.展开更多
Tetronate antibiotics, a growing family of natural products featuring a characteristic tetronic acid moiety, are of importance and of particular interest for their typical structures, especially the spirotetronate str...Tetronate antibiotics, a growing family of natural products featuring a characteristic tetronic acid moiety, are of importance and of particular interest for their typical structures, especially the spirotetronate structure, and corresponding versatile biolog- ical activities. Considerable efforts have persistently performed since the first tetronate was isolated, to elucidate the biosyn- thesis of natural tetronate products, by isotope-labeled feeding experiments, genetical characterization of biosynthetic gene clusters, and biochemical reconstitution of key enzymatic catalyzed reactions. Accordingly, the biosynthesis of spirotetronates has been gradually determined, including biosynthesis of a polyketide-derived backbone for spirotetronate aglycone, incorpo- ration of a glycerol-derived three-carbon unit into tetronic acid moiety, formation of mature aglycone via Diels-AIder-like re- action, and decorations of aglycone with various deoxysugar moieties. In this paper, the biosynthetic investigations of natural tetronates are well documented and a common biosynthetic route for this group of natural products is summarized accordingly.展开更多
基金Supported by National Natural Science Foundation of China(31260406)Natural Science Fund Project of Inner Mongolia(2012MS0502)~~
文摘Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.
基金supported by funding from Shengxue Dacheng Pharmaceutical Co.,Ltd,National Natural Science Foundation of China(31400034 and 31570031)the Ministry of Science and Technology of China(2013CB734001)
文摘Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics.To increase the oxytetracycline(OTC) production in Streptomyces rimosus,we investigated the cooperative effect of three co-overexpressing OTC resistance genes:one gene encodes a ribosomal protection protein(otrA) and the other two express efflux proteins(otrB and otrC).Results indicated that combinational overexpression of otrA,otrB,and otrC(MKABC) exerted a synergetic effect.OTC production increased by 179%in the recombinant strain compared with that of the wild-type strain M4018.The resistance level to OTC was increased by approximately two-fold relative to the parental strain,thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production.Furthermore,the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC;such strain can produce OTC of approximately7.49 g L^((-1)),which represents an increase of 19%in comparison with that of the OtcR-overexpressing strain alone.Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.
基金supported by grants from the Ministry of Science and Technology of China(2013CB734001 and 2015CB150600)the National Natural Science Foundation of China(31370097 and 31571281)
文摘Genetic modification of large DNA fragments(gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase their value and productivity.In this study,we developed a method for scarless and precise modification of large gene clusters by using RecET/RED-mediated polymerase chain reaction(PCR) targeting combined with Gibson assembly.In this strategy,the biosynthetic genes for peptidyl moieties(HPHT) in the nikkomycin biosynthetic gene cluster were replaced with those for carbamoylpolyoxamic acid(CPOAA)from the polyoxin biosynthetic gene cluster to generate a^40 kb hybrid gene cluster in Escherichia coli with a reusable targeting cassette.The reconstructed cluster was introduced into Streptomyces lividans TK23 for heterologous expression and the expected hybrid antibiotic,polynik A,was obtained and verified.This study provides an efficient strategy for gene cluster reconstruction and modification that could be applied in synthetic biology and combinatory biosynthesis to synthesize novel bioactive metabolites or to improve antibiotic production.
基金supported by the Research Fund for the Doctoral Program of Higher Education of Chinathe Research and Development Program of Hubei Province,and the China Postdoctoral Science Foundation(2012M521461)
文摘Tetronate antibiotics, a growing family of natural products featuring a characteristic tetronic acid moiety, are of importance and of particular interest for their typical structures, especially the spirotetronate structure, and corresponding versatile biolog- ical activities. Considerable efforts have persistently performed since the first tetronate was isolated, to elucidate the biosyn- thesis of natural tetronate products, by isotope-labeled feeding experiments, genetical characterization of biosynthetic gene clusters, and biochemical reconstitution of key enzymatic catalyzed reactions. Accordingly, the biosynthesis of spirotetronates has been gradually determined, including biosynthesis of a polyketide-derived backbone for spirotetronate aglycone, incorpo- ration of a glycerol-derived three-carbon unit into tetronic acid moiety, formation of mature aglycone via Diels-AIder-like re- action, and decorations of aglycone with various deoxysugar moieties. In this paper, the biosynthetic investigations of natural tetronates are well documented and a common biosynthetic route for this group of natural products is summarized accordingly.