To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's ...To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.展开更多
Industrial transformation and green production(ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and respo...Industrial transformation and green production(ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and responding to global environmental change. Aiming at a thorough examination of the implementation of ITGP in China, this paper presents its objectives, its three major areas, and their progress so far. It also identifies the key elements of its management and proposes new perspectives on managing green transformation. For instance, we introduce a case study on cement industry that shows the positive policy effects of reducing backward production capacity on PCDD/Fs emissions. Finally,to develop different transformation scenarios for a green future, we propose four strategies: 1) policy integration for promoting green industry, 2)system innovation and a multidisciplinary approach, 3) collaborative governance with all potential stakeholders, and 4) managing uncertainty,risks, and long-time horizons.展开更多
The characteristics of methane emission were compared among six types of upland and paddy soils developed from different parent materials with distinct physics and chemical properties after planting rice. The fluxes o...The characteristics of methane emission were compared among six types of upland and paddy soils developed from different parent materials with distinct physics and chemical properties after planting rice. The fluxes of methane emission in submerged soils from the upland were obviously lower than those from the paddy rice field. The flux of methane emission in the paddy soil developed from fluvo-aquic soil was the largest among all the types of soils. Planting of rice was helpful to emission of methane in soils. The amounts of various groups of methanogenic flora were conformed with the deferences among the fluxes of methane emission in various types of soils. Methane formation was observed in each type Of air-dried soils stored for a long time after addition of water and incubation at 35℃.展开更多
In the post-financial crisis era,China is facing dual pressure from reducing carbon emissions and external demand stagnation.The industrial structure changing is in urgent needs.The cultural and creative industries ca...In the post-financial crisis era,China is facing dual pressure from reducing carbon emissions and external demand stagnation.The industrial structure changing is in urgent needs.The cultural and creative industries can expand China's markets through creating and stimulating demands,and can reduce carbon emissions at the same time.By producing both demands and supplies,cultural and creative industries may lead the development of other industries.Since innovation plays a quite important role in the value chain,cultural and creative industries can promote the industrial upgrading and the industrial structure optimization by industrial convergence.展开更多
In this paper,using the input-output model,the author first calculated the CO 2 emissions embodied in exports of China in 2002 and 2007.Then,the author empirically analyzed problems existing in the composition of expo...In this paper,using the input-output model,the author first calculated the CO 2 emissions embodied in exports of China in 2002 and 2007.Then,the author empirically analyzed problems existing in the composition of exported products and analyzed its possible reasons.The research results of this paper are as follows:Since China's entry into WTO,the CO 2 emissions embodied in exports of China have been increasing rapidly;the value of exported products of high-carbon emissions industries accounts for a relatively higher proportion to China's total exports value because China's carbon intensive products have a certain competitive advantage.Additionally,this paper has put forward relevant suggestions based on these results.展开更多
In November 2011, the Australian government approved the legislation (Clean Energy Act 2011) to introduce a reduction plan of carbon emissions in Australia. This plan will be implemented from July 2012. This is one ...In November 2011, the Australian government approved the legislation (Clean Energy Act 2011) to introduce a reduction plan of carbon emissions in Australia. This plan will be implemented from July 2012. This is one of the first accounting studies to investigate the potential impacts of this plan on long-lived asset values and operating cash flows for Australian listed companies. A sample of Australian Securities Exchange (ASX) 200 indexed companies from 2'006 to 2010 is used. Hypotheses are tested based on Heckman's (1979) two-stage approach. Three regression models are developed to examine the association between carbon emissions and asset values/operating cash flows. This study finds that asset values and operating cash flows will be adversely affected, if the reduction plan is implemented. Specifically, this study finds that the book value of long-lived assets will decrease, if listed companies are considered to be emissions-liable. The book value of long-lived assets is further found to be negatively associated with listed companies' carbon emission levels. This study also demonstrates that operating cash flows of emissions-liable companies will be adversely affected. However, this study does not find a relationship between operating cash flows and companies' emission levels. The empirical findings from Australian listed companies provide the evidence that the reduction plan of carbon emissions will adversely affect corporate entities' asset values and operating cash flows. The results further indicate that the magnitude of the impact will be proportional to the companies' emission levels. The implications of these empirical findings for listed companies, for the accounting profession, and for carbon emission regulators are also discussed.展开更多
All human activities, including food production, are potentially sources of greenhouse gases (GHG) emissions. In order to provide a better understanding of how to mitigate the GHG emissions, an inventory based on di...All human activities, including food production, are potentially sources of greenhouse gases (GHG) emissions. In order to provide a better understanding of how to mitigate the GHG emissions, an inventory based on different beef supply chains in the United Kingdom and in Brazil was carried out. The carbon footprint of the beef systems was calculated based on the life cycle assessment methodology. Total emissions per kg of bone-free meat were calculated at being 33.85, 33.99 and 45.17 kg of CO2e-100/kg for UK1, UK2 and Brazil farm units, respectively. Based on an average potential for carbon sequestration rate at the proportion of 12:44 for C:CO2 conversion for well managed grasslands, there is a potential sequestration of 1,980 kg of CO2/ha/year. This would potentially reduce the total emissions value for the three distinct supply chains the cases ofUKb UK2 and Brazil, respectively. as being 29.4, 28.4 and 25.4 kg C02-e 100/kg of bone-free meat for展开更多
In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent n...In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel ceils as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.展开更多
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help...River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.展开更多
This study uses an input-output model presenting the embodied carbon emission in the importexport procedure, as well as the responsibility allocation between China's 35 sectors and 7 main trade partners from 1995 ...This study uses an input-output model presenting the embodied carbon emission in the importexport procedure, as well as the responsibility allocation between China's 35 sectors and 7 main trade partners from 1995 to 2011. Results indicate that the amount of carbon emissions in China's industrial sectors is immense and that the industrial sectors are in serious imbalance. Such imbalance exists mainly in textiles, basic and fabricated metal, electrical and optical equipment,and machinery, among others. Based on the consumer-responsibility principle, the responsibility of 29 departments is reduced. Correspondingly, foreign sectors become more responsible.America, as China's largest trading partner, should account for most of the total responsibility,followed by developed countries such as Japan, South Korea, and Germany.展开更多
With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the g...With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the global climate changes has been the focus of concern of the world. As the biggest developing country and the second largest country of carbon-emission, China attaches importance to the carbon emission reduction. The major GHG component is carbon dioxide and in China, the emis- sion of carbon dioxide is mainly from industrial production. In the paper, the status and trend of Coz emission from industrial departments, high-carbon emission and its specific industries are shown in statistics. Meanwhile, the policy environment, industrial organization structure and technology of carbon high emission are all discussed based on practical situations in these departments and industries. At the end, through the analysis of gray correlation, correlativity is explored for both fossil energy consumption and total carbon emission, and also for the production value and carbon emission of each industrial sector. Some policy proposals for the establishment of low-carbon industries and transition of economic development pattern are set forth.展开更多
Rice paddies are increasingly being converted to vegetable production due to economic benefits related,in part,to changes in demand during recent decades.Here,we implemented a parallel field experiment to simultaneous...Rice paddies are increasingly being converted to vegetable production due to economic benefits related,in part,to changes in demand during recent decades.Here,we implemented a parallel field experiment to simultaneously measure annual emissions of CH_4and N_2O,and soil organic carbon(SOC)stock changes,in rice paddies(RP),rice paddy–converted conventional vegetable fields(CV),and rice paddy–converted greenhouse vegetable fields(GV).Changing from rice to vegetable production reduced CH_4emissions by nearly 100%,and also triggered substantial N_2O emissions.Furthermore,annual N_2O emissions from GV significantly exceeded those from CV due to lower soil p H and higher soil temperature.Marginal SOC losses occurred after one year of cultivation of RP,CV,and GV,contributing an important share(3.4%,32.2%,and 10.3%,respectively)of the overall global warming potential(GWP)balance.The decline in CH_4emissions outweighed the increased N_2O emissions and SOC losses in CV and GV,leading to a 13%–30%reduction in annual GWP as compared to RP.These results suggest that large-scale expansion of vegetable production at the expense of rice paddies is beneficial for mitigating climate change in terms of the overall GWP.展开更多
In the procedure of coal industry production, the losses of the persons and economy caused by the gas explosion accidents are most serious, therefore, prevention and control of the gas explosion accident of the coal m...In the procedure of coal industry production, the losses of the persons and economy caused by the gas explosion accidents are most serious, therefore, prevention and control of the gas explosion accident of the coal mines is an important issue needed to be solved urgently in the safety production work of our coal mines. The characteristic of time structure variation index characteristic was analyzed about gas concentration sequence of three measure points in the NO. 1I 1024 working face. It was found that the value of time variation about three measure points was mostly 1〈δ≤1.5, and gas emission presented consistently strong-clustering state twice, and the value of time variation presented continuous variation state in the active stage of gas concentration. Complex characteristics of the value indicated gas emission was continuously variable in time or space and presented the complex nonlinear characteristics. So the characteristic about gas emission system was correctly depicted and analyzed to gas emission system according to the relation of its state variation and essential of nonlinear system. The result also provided reliable warranty for its continued nonlinear research on gas emission.展开更多
Based on the situation that the trade of manufactured goods takes the main position in Shandong Province,this paper identifies Shandong industrial pollutant discharge by three indices,which are industrial effluent dis...Based on the situation that the trade of manufactured goods takes the main position in Shandong Province,this paper identifies Shandong industrial pollutant discharge by three indices,which are industrial effluent discharge,industrial SO2 emission,and solid waste disposal.Furthermore,it conducts an empirical analysis of the trade terms of pollution content transfer on nine identified industrial sectors.The conclusion is that the increase in industrial effluent discharge,industrial SO2 emission,and solid waste disposal has paralleled the growth of the GDP in Shandong.The rapid economic growth brings obvious negative impact on the environment.Compared with that in 1998,the increase in the pollution content of exports in 2007 indicated that more environmental costs were generated with the economic development in Shandong.There is a need for optimization of foreign trade structure in Shandong,especially the need for increasing import of the pollution intensive products and decreasing the export of the pollution intensive products.The research on the relationship between manufactured goods trade and the environmental impact will make a contribution to the adjustment of foreign trade and environmental policies.展开更多
According to the authoritative data involving social economic indicators and greenhouse gas (GHG) emission from the international universal database, the levels and processes of economic development and GHG emission...According to the authoritative data involving social economic indicators and greenhouse gas (GHG) emission from the international universal database, the levels and processes of economic development and GHG emission in major economic groups, nations and regions of the world are simultaneously analyzed. Obtaining Gross Domestic Product (GDP) and emission per capita from various countries and regions in the past 40 years as the standard, countries and regions in the world are divided into six groups: countries with low emission per capita and low economic level (IA), countries with low emission per capita and medium economic level (IIA), countries with low emission per capita and high economic level (IIIA), countries with high emission per capita and medium economic level (liB), countries with high emission per capita and high economic level (IIIB), countries with high emission per capita and low economic level (IB). Countries belong to IB are quite rare in the study period, while the first five groups correspond to the poor regions, main developing countries, economically transitional countries with rapid economic development, rich islands and developed North America and Europe respectively. Data analysis shows that there is a close relationship between emission and economic development of different countries and regions. The composition relationship between economic development of different countries and regions is relatively stable over a long period of time. From 1970 to 2005, rising trends existed in the economic development of most countries and regions. However, the emission had a significant increase in a small part of countries and regions. In other words, for those with high emission, the emission level is always high. But for those with low GHG emission, the emission does not increase too much. The main processes of the change of countries pattern from IA to IIA and from II B to IIIB, occurring in the 1970s and from the late 1970s to the 1980s respectively. That result has .a significant enlightening effect in understanding the relationship between emission and eco- nomic development and its historical process of various countries and in choosing the position of our country in the future climate diplomatic negotiations.展开更多
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
The objective of this research is to quantify the EEC (embodied energy/CO2) of a building. The EEC represents the energy consumption and CO2 emissions at individual phases of a building's life-cycle, such as constr...The objective of this research is to quantify the EEC (embodied energy/CO2) of a building. The EEC represents the energy consumption and CO2 emissions at individual phases of a building's life-cycle, such as construction (including manufacture of materials and equipment), renewal (including repair work) and demolition. Energy and CO2 emission intensities in terms of 401 sectors were calculated, using the 2005 I-O (input-output) table in Japan. According to our case study conducted from the construction phase to demolition, the EC (embodied CO2) of an office building used for 60 years is 12,044 t-CO2 and 1,093 kg-CO2/m^2 in total. CO2 equivalent emissions (CO2e) by Freon gases, contained in building materials, equipment and devices, were also calculated. As the results, CO2e by insulators was 2% of the building's EC and CO2e by refrigerants was 9%-12% of the building's EC. It is important to keep reducing emissions of Freon gases contained in refrigerators.展开更多
The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this st...The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this study, based on Cobb-Douglas production function, we make a SFA model which takes the energy input and CO2 emission into account. By using the SFA model, we calculate the refineries' total-factor energy efficiency with Sinopec refineries' micro-data from 2004 to 2009. Meanwhile, we do empirical study on the factors which influence the energy efficiency. In the last, we put forward some advices so as to improve energy efficiency.展开更多
Green supply chain is one of the trends of industry development. And performance measurement is the key to implementing the supply chain. So it is necessary to evaluate the environmental performance of supply chain .A...Green supply chain is one of the trends of industry development. And performance measurement is the key to implementing the supply chain. So it is necessary to evaluate the environmental performance of supply chain .According to the connotation of green supply chain and the standards of environmental management, this paper designs green performance measurement systems which is composed of four main factors such as waste emissions and exposure hazard, resource utilization, product recovery, and environmental reputation. And the authors delve deeply these factors so that it forms a two-level measurement system. Then the effect on the traditional performance measurement of supply chain is studied after taking greening to the supply chain leveL At last the authors apply the method of multi-level fuzzy judgment to the environmental performance measurement system. An example is given to show the judgment process.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103039)Shandong Provincial Natural Science Foundation,China(ZR2013DQ023)+1 种基金Science and Technology Development Plan Project of Shandong Province(2013GNC11204)Major Agricultural Application Technology Innovation Project of Shandong Province(Study on Environmental Regulation and Fertilizer Application Techniques for High Yield and High Efficiency Utilization of Greenhouse Tomato)~~
文摘To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.
基金funded by the Chinese Academy of Sciences (KZZD-EW-TZ-12)National Natural Science Foundation of China (414201040045 and 41371488)Natural Science Foundation of Hainan Province (413129)
文摘Industrial transformation and green production(ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and responding to global environmental change. Aiming at a thorough examination of the implementation of ITGP in China, this paper presents its objectives, its three major areas, and their progress so far. It also identifies the key elements of its management and proposes new perspectives on managing green transformation. For instance, we introduce a case study on cement industry that shows the positive policy effects of reducing backward production capacity on PCDD/Fs emissions. Finally,to develop different transformation scenarios for a green future, we propose four strategies: 1) policy integration for promoting green industry, 2)system innovation and a multidisciplinary approach, 3) collaborative governance with all potential stakeholders, and 4) managing uncertainty,risks, and long-time horizons.
文摘The characteristics of methane emission were compared among six types of upland and paddy soils developed from different parent materials with distinct physics and chemical properties after planting rice. The fluxes of methane emission in submerged soils from the upland were obviously lower than those from the paddy rice field. The flux of methane emission in the paddy soil developed from fluvo-aquic soil was the largest among all the types of soils. Planting of rice was helpful to emission of methane in soils. The amounts of various groups of methanogenic flora were conformed with the deferences among the fluxes of methane emission in various types of soils. Methane formation was observed in each type Of air-dried soils stored for a long time after addition of water and incubation at 35℃.
文摘In the post-financial crisis era,China is facing dual pressure from reducing carbon emissions and external demand stagnation.The industrial structure changing is in urgent needs.The cultural and creative industries can expand China's markets through creating and stimulating demands,and can reduce carbon emissions at the same time.By producing both demands and supplies,cultural and creative industries may lead the development of other industries.Since innovation plays a quite important role in the value chain,cultural and creative industries can promote the industrial upgrading and the industrial structure optimization by industrial convergence.
基金funded by 2011 the Humanities and Social Sciences Research Program of Education Ministry of P.R.China (Grant No.11YJA790229)
文摘In this paper,using the input-output model,the author first calculated the CO 2 emissions embodied in exports of China in 2002 and 2007.Then,the author empirically analyzed problems existing in the composition of exported products and analyzed its possible reasons.The research results of this paper are as follows:Since China's entry into WTO,the CO 2 emissions embodied in exports of China have been increasing rapidly;the value of exported products of high-carbon emissions industries accounts for a relatively higher proportion to China's total exports value because China's carbon intensive products have a certain competitive advantage.Additionally,this paper has put forward relevant suggestions based on these results.
文摘In November 2011, the Australian government approved the legislation (Clean Energy Act 2011) to introduce a reduction plan of carbon emissions in Australia. This plan will be implemented from July 2012. This is one of the first accounting studies to investigate the potential impacts of this plan on long-lived asset values and operating cash flows for Australian listed companies. A sample of Australian Securities Exchange (ASX) 200 indexed companies from 2'006 to 2010 is used. Hypotheses are tested based on Heckman's (1979) two-stage approach. Three regression models are developed to examine the association between carbon emissions and asset values/operating cash flows. This study finds that asset values and operating cash flows will be adversely affected, if the reduction plan is implemented. Specifically, this study finds that the book value of long-lived assets will decrease, if listed companies are considered to be emissions-liable. The book value of long-lived assets is further found to be negatively associated with listed companies' carbon emission levels. This study also demonstrates that operating cash flows of emissions-liable companies will be adversely affected. However, this study does not find a relationship between operating cash flows and companies' emission levels. The empirical findings from Australian listed companies provide the evidence that the reduction plan of carbon emissions will adversely affect corporate entities' asset values and operating cash flows. The results further indicate that the magnitude of the impact will be proportional to the companies' emission levels. The implications of these empirical findings for listed companies, for the accounting profession, and for carbon emission regulators are also discussed.
文摘All human activities, including food production, are potentially sources of greenhouse gases (GHG) emissions. In order to provide a better understanding of how to mitigate the GHG emissions, an inventory based on different beef supply chains in the United Kingdom and in Brazil was carried out. The carbon footprint of the beef systems was calculated based on the life cycle assessment methodology. Total emissions per kg of bone-free meat were calculated at being 33.85, 33.99 and 45.17 kg of CO2e-100/kg for UK1, UK2 and Brazil farm units, respectively. Based on an average potential for carbon sequestration rate at the proportion of 12:44 for C:CO2 conversion for well managed grasslands, there is a potential sequestration of 1,980 kg of CO2/ha/year. This would potentially reduce the total emissions value for the three distinct supply chains the cases ofUKb UK2 and Brazil, respectively. as being 29.4, 28.4 and 25.4 kg C02-e 100/kg of bone-free meat for
文摘In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel ceils as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.
基金Under the auspices of National Natural Science Foundation of China(No.41371538)Independent Project of State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.SKLURE2008-1-02)
文摘River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.
基金the National Social Science Fund of China:"Comparison and Coping Strategies of China's Carbon Emission Reduction Responsibility under Different Carbon Emission Responsibility Principles":[Grant Number 15BGJ054]the Humanities and Social Science Foundation of the Ministry of Education of China:"Research on the Calculations and Countermeasures of China's Foreign Trade Embodied Carbon Emission":[Grant Number13YJAZH122]
文摘This study uses an input-output model presenting the embodied carbon emission in the importexport procedure, as well as the responsibility allocation between China's 35 sectors and 7 main trade partners from 1995 to 2011. Results indicate that the amount of carbon emissions in China's industrial sectors is immense and that the industrial sectors are in serious imbalance. Such imbalance exists mainly in textiles, basic and fabricated metal, electrical and optical equipment,and machinery, among others. Based on the consumer-responsibility principle, the responsibility of 29 departments is reduced. Correspondingly, foreign sectors become more responsible.America, as China's largest trading partner, should account for most of the total responsibility,followed by developed countries such as Japan, South Korea, and Germany.
文摘With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the global climate changes has been the focus of concern of the world. As the biggest developing country and the second largest country of carbon-emission, China attaches importance to the carbon emission reduction. The major GHG component is carbon dioxide and in China, the emis- sion of carbon dioxide is mainly from industrial production. In the paper, the status and trend of Coz emission from industrial departments, high-carbon emission and its specific industries are shown in statistics. Meanwhile, the policy environment, industrial organization structure and technology of carbon high emission are all discussed based on practical situations in these departments and industries. At the end, through the analysis of gray correlation, correlativity is explored for both fossil energy consumption and total carbon emission, and also for the production value and carbon emission of each industrial sector. Some policy proposals for the establishment of low-carbon industries and transition of economic development pattern are set forth.
文摘Rice paddies are increasingly being converted to vegetable production due to economic benefits related,in part,to changes in demand during recent decades.Here,we implemented a parallel field experiment to simultaneously measure annual emissions of CH_4and N_2O,and soil organic carbon(SOC)stock changes,in rice paddies(RP),rice paddy–converted conventional vegetable fields(CV),and rice paddy–converted greenhouse vegetable fields(GV).Changing from rice to vegetable production reduced CH_4emissions by nearly 100%,and also triggered substantial N_2O emissions.Furthermore,annual N_2O emissions from GV significantly exceeded those from CV due to lower soil p H and higher soil temperature.Marginal SOC losses occurred after one year of cultivation of RP,CV,and GV,contributing an important share(3.4%,32.2%,and 10.3%,respectively)of the overall global warming potential(GWP)balance.The decline in CH_4emissions outweighed the increased N_2O emissions and SOC losses in CV and GV,leading to a 13%–30%reduction in annual GWP as compared to RP.These results suggest that large-scale expansion of vegetable production at the expense of rice paddies is beneficial for mitigating climate change in terms of the overall GWP.
基金Supported by Project Provincial Natural Science Foundation of Hunan (09J J3126) The Doctoral Research Activating Fund of Xiangtan University (09QDZ13, 10QDZ04)
文摘In the procedure of coal industry production, the losses of the persons and economy caused by the gas explosion accidents are most serious, therefore, prevention and control of the gas explosion accident of the coal mines is an important issue needed to be solved urgently in the safety production work of our coal mines. The characteristic of time structure variation index characteristic was analyzed about gas concentration sequence of three measure points in the NO. 1I 1024 working face. It was found that the value of time variation about three measure points was mostly 1〈δ≤1.5, and gas emission presented consistently strong-clustering state twice, and the value of time variation presented continuous variation state in the active stage of gas concentration. Complex characteristics of the value indicated gas emission was continuously variable in time or space and presented the complex nonlinear characteristics. So the characteristic about gas emission system was correctly depicted and analyzed to gas emission system according to the relation of its state variation and essential of nonlinear system. The result also provided reliable warranty for its continued nonlinear research on gas emission.
文摘Based on the situation that the trade of manufactured goods takes the main position in Shandong Province,this paper identifies Shandong industrial pollutant discharge by three indices,which are industrial effluent discharge,industrial SO2 emission,and solid waste disposal.Furthermore,it conducts an empirical analysis of the trade terms of pollution content transfer on nine identified industrial sectors.The conclusion is that the increase in industrial effluent discharge,industrial SO2 emission,and solid waste disposal has paralleled the growth of the GDP in Shandong.The rapid economic growth brings obvious negative impact on the environment.Compared with that in 1998,the increase in the pollution content of exports in 2007 indicated that more environmental costs were generated with the economic development in Shandong.There is a need for optimization of foreign trade structure in Shandong,especially the need for increasing import of the pollution intensive products and decreasing the export of the pollution intensive products.The research on the relationship between manufactured goods trade and the environmental impact will make a contribution to the adjustment of foreign trade and environmental policies.
文摘According to the authoritative data involving social economic indicators and greenhouse gas (GHG) emission from the international universal database, the levels and processes of economic development and GHG emission in major economic groups, nations and regions of the world are simultaneously analyzed. Obtaining Gross Domestic Product (GDP) and emission per capita from various countries and regions in the past 40 years as the standard, countries and regions in the world are divided into six groups: countries with low emission per capita and low economic level (IA), countries with low emission per capita and medium economic level (IIA), countries with low emission per capita and high economic level (IIIA), countries with high emission per capita and medium economic level (liB), countries with high emission per capita and high economic level (IIIB), countries with high emission per capita and low economic level (IB). Countries belong to IB are quite rare in the study period, while the first five groups correspond to the poor regions, main developing countries, economically transitional countries with rapid economic development, rich islands and developed North America and Europe respectively. Data analysis shows that there is a close relationship between emission and economic development of different countries and regions. The composition relationship between economic development of different countries and regions is relatively stable over a long period of time. From 1970 to 2005, rising trends existed in the economic development of most countries and regions. However, the emission had a significant increase in a small part of countries and regions. In other words, for those with high emission, the emission level is always high. But for those with low GHG emission, the emission does not increase too much. The main processes of the change of countries pattern from IA to IIA and from II B to IIIB, occurring in the 1970s and from the late 1970s to the 1980s respectively. That result has .a significant enlightening effect in understanding the relationship between emission and eco- nomic development and its historical process of various countries and in choosing the position of our country in the future climate diplomatic negotiations.
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
文摘The objective of this research is to quantify the EEC (embodied energy/CO2) of a building. The EEC represents the energy consumption and CO2 emissions at individual phases of a building's life-cycle, such as construction (including manufacture of materials and equipment), renewal (including repair work) and demolition. Energy and CO2 emission intensities in terms of 401 sectors were calculated, using the 2005 I-O (input-output) table in Japan. According to our case study conducted from the construction phase to demolition, the EC (embodied CO2) of an office building used for 60 years is 12,044 t-CO2 and 1,093 kg-CO2/m^2 in total. CO2 equivalent emissions (CO2e) by Freon gases, contained in building materials, equipment and devices, were also calculated. As the results, CO2e by insulators was 2% of the building's EC and CO2e by refrigerants was 9%-12% of the building's EC. It is important to keep reducing emissions of Freon gases contained in refrigerators.
文摘The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this study, based on Cobb-Douglas production function, we make a SFA model which takes the energy input and CO2 emission into account. By using the SFA model, we calculate the refineries' total-factor energy efficiency with Sinopec refineries' micro-data from 2004 to 2009. Meanwhile, we do empirical study on the factors which influence the energy efficiency. In the last, we put forward some advices so as to improve energy efficiency.
文摘Green supply chain is one of the trends of industry development. And performance measurement is the key to implementing the supply chain. So it is necessary to evaluate the environmental performance of supply chain .According to the connotation of green supply chain and the standards of environmental management, this paper designs green performance measurement systems which is composed of four main factors such as waste emissions and exposure hazard, resource utilization, product recovery, and environmental reputation. And the authors delve deeply these factors so that it forms a two-level measurement system. Then the effect on the traditional performance measurement of supply chain is studied after taking greening to the supply chain leveL At last the authors apply the method of multi-level fuzzy judgment to the environmental performance measurement system. An example is given to show the judgment process.