An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal d...An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature.展开更多
A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in clima...A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in climate and atmospheric CO2 from 1981 to 1998. Results show that China's total NPP varied between 2.89 and 3.37 Gt C/a and had an increasing trend by 0.32% per year, HR varied between 2.89 and 3.21 Gt C/a and grew by 0.40% per year, Annual NEP varied between -0.32 and 0.25 Gt C but had no statistically significant interannual trend. The positive mean NEP indicates that China's terrestrial ecosystems were taking up carbon with a total carbon sequestration of 1.22 Gt C during the analysis period. The terrestrial NEP in China related to climate and atmospheric CO2 increases accounted for about 10% of the world's total and was similar to the level of the United States in the same period. The mean annual NEP for the analysis period was near to zero for most of the regions in China, but significantly positive NEP occurred in Northeast China Plain, the southeastern Xizang (Tibet) and Huang-Huai-Hai Plain, and negative NEP occurred in the Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau and Yunnan-Guizhou Plateau. China's climate at the time was warm and dry relative to other periods, so the estimated NEP is probably lower than the average level. China's terrestrial NEP may increase if climate becomes wetter but is likely to continue to decrease if the present warming and drying trend sustains.展开更多
The key zones of returning farmland to forestland and grassland in Ningxia were studied. By using the "stepwise revised method",the climate productive potential,light and temperature productive potential in the zone...The key zones of returning farmland to forestland and grassland in Ningxia were studied. By using the "stepwise revised method",the climate productive potential,light and temperature productive potential in the zone in recent 50 years were counted. The light and temperature productive potential of corn in Ningxia irrigated area,the central arid zone and the southern mountain area presented the linear increase trend. But when considered the climate productive potentials of light,temperature and water,the numerical value was very low because of the scarce rainfall,and no agriculture without the irrigation. The light and temperature productive potential,climate productive potential of winter wheat in the central arid zone had no significant trend,but the variation range of climate productive potential was very big. The light and temperature productive potential of winter wheat in the southern mountain area had no significant variation trend,and the climate productive potential presented the weak decline trend. It illustrated that the productive of winter wheat was greatly restricted by the water content. By using the meteorological factor data which were simulated by RegCM3-WOFOST/LINGRA coupled model,the future climate productive potentials of winter wheat in the central south of Ningxia was counted. They both presented the weak increase trend. It illustrated that the climate in Ningxia was favorable to improve the yield of winter wheat after returning farmland to forestland.展开更多
[Objective] Climatic productivity was applied to forecast and analyse the vegetable yield. [Method] Climatic productivity model presented by Zhou and the long-range climate forecasting method were adopted to analyse c...[Objective] Climatic productivity was applied to forecast and analyse the vegetable yield. [Method] Climatic productivity model presented by Zhou and the long-range climate forecasting method were adopted to analyse characteristics of the change of climatic productivity potential at Beibei District in combination with the ac- tual vegetable yield. [Result] The change of climatic productivity at Beibei District was fluctuant in an stable overall trend. The difference of spatial distribution of cli- matic productivity was apparent, with high climatic productivity potential in the north- east; in the actual production, vegetable yield was declining and it was the same with the climate use efficiency; according to the prediction, the vegetable yield would increase slightly in the future 10 years. [Conclusion] This study provides bases for the reasonable plan and layout of vegetable plantation under the climatic condition at Beibei District, as well as the selection of vegetable cultivars.展开更多
This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous ...This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing'anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China's territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing'anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a positive role in the mitigation of climate change.展开更多
The biogenic silica (BSi) ,total organic carbon (TOC) ,total nitrogen (TN) and grain size were analyzed with a gravity core (3250-6) collected from the mud area in the north East China Sea.The average deposition rate ...The biogenic silica (BSi) ,total organic carbon (TOC) ,total nitrogen (TN) and grain size were analyzed with a gravity core (3250-6) collected from the mud area in the north East China Sea.The average deposition rate of the upper core was about 0.078cm yr1based on the results of 210Pbex.The mean grain size increased with depth in general.The frequency distribution of grain size showed that two marked changes of deposition environment occurred at 30 cm and 50 cm depths (about 1550 AD and 1300 AD,respectively) .The variations of BSi and TOC indicated two distinct major periods of primary productivity over the past 800 years:a stage of low primary productivity corresponding to weak upwelling and low nutrient input below 30 cm depth (about 1200-1550 AD) ,and a stage of high primary productivity with strong currents and upwelling above 30 cm depth (about 1550-1950 AD) .The stage with high primary productive appeared to be due to the northward-expanded muddy area caused by strong Asian Winter Monsoon and enhanced Yellow Sea Warm Current in winter.In conclusion,the BSi and TOC in the muddy sediments,the symbols of marine primary productivity,can be then used to investigate the evolution history of currents and relative climate change in the offshore areas.展开更多
In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this ...In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.展开更多
Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas producti...Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas production control are conducted by using COMET3 reservoir modeling software.The results show that in the next 20 years,the cumulative and average daily gas production of the QN01 well are expected to be 800×104 m3 and 1141.1 m3/d,for the QN02 well 878×104 m3 and 1202.7 m3/d and 97.5×104 m3 and 133.55 m3/d for the QN03 well.Gas content and reservoir pressure are the key factors controlling gas production in the area;coal thickness,permeability and porosity are less important;the Langmuir volume,Langmuir pressure and adsorption time have relatively small effect.In the process of CBM recovery,the material source and driving force are the key features affecting gas productivity,while the permeation process is relatively important and the desorption process has some impact on gas recovery.展开更多
Predicting how human activity will influence the response of alpine grasslands to future warming has many uncertainties.In this study, a field experiment with controlled warming and clipping was conducted in an alpine...Predicting how human activity will influence the response of alpine grasslands to future warming has many uncertainties.In this study, a field experiment with controlled warming and clipping was conducted in an alpine meadow at three elevations(4313 m, 4513 m and 4693 m) in Northern Tibet to test the hypothesis that clipping would alter warming effect on biomass production.Open top chambers(OTCs) were used to increase temperature since July,2008 and the OTCs increased air temperature by approximately 0.9o C ~ 1.8o C during the growing in2012.Clipping was conducted three times one year during growing season and the aboveground parts of all live plants were clipped to approximately 0.01 m in height using scissors since 2009.Gross primary production(GPP) was calculated from the Moderate-Resolution Imaging Spectroradiometer GPP algorithm and aboveground plant production was estimated using the surface-measured normalized difference vegetation index in 2012.Warming decreased the GPP, aboveground biomass(AGB) and aboveground net primary production(ANPP) at all three elevations when clipping was not applied.In contrast, warming increased AGB at all three elevations, GPP at the two lower elevations and ANPP at the two higher elevations when clipping was applied.These findings show that clipping reduced the negative effect of warming on GPP, AGB and ANPP, suggesting that clipping may reduce the effect of climate warming on GPP, AGB and ANPP in alpine meadows on the Tibetan Plateau, and therefore, may be a viable strategy for mitigating the effects of climate change on grazing and animal husbandry on the Tibetan Plateau.展开更多
A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs ...A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs in a coalbed gas field in central China to optimize wellsite locations in the studied area in combination with the dynamic data about actual production in the coalbed gas field, selects a favorable subarea for gas wells deployment. The method is established based on the basic properties of coal reservoirs, in combination with the coalbed thickness and the gas content to make an analysis of the gas storage potential of a coal reservoir, as well as resources volume and the permeability of a coal reservoir. This method can be popularized for optimization of wellsite locations in other methane gas development areas or blocks.展开更多
Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the...Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the regional and site-scale terrestrial ecosystem productivity.So far,only one work has quantified their global impacts on terrestrial ecosystem productivity based on offline simulations,which,however,did not consider the impacts of aerosol–cloud interactions and aerosol–climate feedbacks.This study quantitatively assesses the influence of fire aerosols on the global annual gross primary productivity(GPP)of terrestrial ecosystems using simulations with the fully coupled global Earth system model CESM1.2.Results show that fire aerosols generally decrease GPP in vegetated areas,with a global total of−1.6 Pg C yr^−1,mainly because fire aerosols cool and dry the land surface and weaken the direct photosynthetically active radiation(PAR).The exception to this is the Amazon region,which is mainly due to a fire-aerosol-induced wetter land surface and increased diffuse PAR.This study emphasizes the importance of the influence of fire aerosols on climate in quantifying global-scale fire aerosols’impacts on terrestrial ecosystem productivity.展开更多
This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is ...This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is used as fairness index to analyze the fairness of WLANs instead of the channel access probability (CAP) used in the distributed coordination function (DCF). The standard COT is given by access point (AP) and broadcasted to all wireless stations. The AP and wireless stations in the WLAN can achieve COT-based fairness by adjusting their packet length, sending the multiple back-to-back packets at one time, or giving up an opportunity to access the channel. Analysis and simulations show that our algorithm can provide COT-fairness. Compared with the CAP-based algorithm, the proposed algorithm leads to improvements in aggregate throughput of IEEE 802. lib multi-rate WLANs.展开更多
A number of studies indicate that global climate warming has been increasing, especially in recent decades. Climate warming greatly affects global agro-production and food security-- becoming a hotspot of global envir...A number of studies indicate that global climate warming has been increasing, especially in recent decades. Climate warming greatly affects global agro-production and food security-- becoming a hotspot of global environmental change. This paper proposes a structural and orientational framework for scientifically addressing climatic change impact on agroroduction. Through literature reviews and comparative studies, the paper systematically summarizes influencing mechanisms and impact of climate warming on such agro-production factors as light, temperature, soil quality and water environment. The impact of climate warm- ing on cultivation regions, cropping systems, crop pests, agro- production capacity, agro-economy and farm management is analyzed. Then, suitable climate-adapting agro-development strategies are put forward for different regions in China. The strategies are carefully selected from a repository of international tested climatic change countermeasures in agriculture at national or district level.展开更多
Due to climate change, the regional agro-climatic conditions in Southwest China have undergone changes. The heat sources for the growth of crops have been improved. The number of days with temperatures steadily above ...Due to climate change, the regional agro-climatic conditions in Southwest China have undergone changes. The heat sources for the growth of crops have been improved. The number of days with temperatures steadily above 0℃ and 10℃ (two criteria) have increased during 1960-2010. The area suitable for multiple cropping has increased; the growth period has shortened; the climatic potential productivity has declined; the pest damage has worsened. During 1986-2010, the desired cooling degree days in Southwest China has increased at 38.9℃ d per decade. Forest fires and pests have increased. The area of meadow and wetlands has decreased. Heterogeneous invasion has intensified; endangered animal and plant species have increased. The tourism landscape has been damaged.' The risk of human health has increased. In the 21st century, with the increase of temperature and precipitation, the number of days with temperature steadily above 10℃ and the accumulated temperature will continue to increase, most notably in the Qinghai-Tibetan Plateau. The area of intercropping will expand; multiple cropping will move to higher altitudes. The impacts of agro- meteorological disasters, pests and diseases will intensify. The summer cooling energy consumption continues to increase; energy supply will show larger variability; the gap between energy supply and demand will be widened. The phenology will keep on changing, and the habitat will be worsening. Biological population will move northward and to higher altitudes. Some species are at risk of extinction. Negative effects on health will increase.展开更多
It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the pro...It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.展开更多
基金This paper was supported by the National Natural Sci-ence Foundation of China (Grant No. 40371001) and the Youth Foundation of Beijing Normal University
文摘An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature.
文摘A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in climate and atmospheric CO2 from 1981 to 1998. Results show that China's total NPP varied between 2.89 and 3.37 Gt C/a and had an increasing trend by 0.32% per year, HR varied between 2.89 and 3.21 Gt C/a and grew by 0.40% per year, Annual NEP varied between -0.32 and 0.25 Gt C but had no statistically significant interannual trend. The positive mean NEP indicates that China's terrestrial ecosystems were taking up carbon with a total carbon sequestration of 1.22 Gt C during the analysis period. The terrestrial NEP in China related to climate and atmospheric CO2 increases accounted for about 10% of the world's total and was similar to the level of the United States in the same period. The mean annual NEP for the analysis period was near to zero for most of the regions in China, but significantly positive NEP occurred in Northeast China Plain, the southeastern Xizang (Tibet) and Huang-Huai-Hai Plain, and negative NEP occurred in the Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau and Yunnan-Guizhou Plateau. China's climate at the time was warm and dry relative to other periods, so the estimated NEP is probably lower than the average level. China's terrestrial NEP may increase if climate becomes wetter but is likely to continue to decrease if the present warming and drying trend sustains.
基金Supported by the National Natural Science Fund Item (40675071)~~
文摘The key zones of returning farmland to forestland and grassland in Ningxia were studied. By using the "stepwise revised method",the climate productive potential,light and temperature productive potential in the zone in recent 50 years were counted. The light and temperature productive potential of corn in Ningxia irrigated area,the central arid zone and the southern mountain area presented the linear increase trend. But when considered the climate productive potentials of light,temperature and water,the numerical value was very low because of the scarce rainfall,and no agriculture without the irrigation. The light and temperature productive potential,climate productive potential of winter wheat in the central arid zone had no significant trend,but the variation range of climate productive potential was very big. The light and temperature productive potential of winter wheat in the southern mountain area had no significant variation trend,and the climate productive potential presented the weak decline trend. It illustrated that the productive of winter wheat was greatly restricted by the water content. By using the meteorological factor data which were simulated by RegCM3-WOFOST/LINGRA coupled model,the future climate productive potentials of winter wheat in the central south of Ningxia was counted. They both presented the weak increase trend. It illustrated that the climate in Ningxia was favorable to improve the yield of winter wheat after returning farmland to forestland.
基金Supported by the Research Fund of Science and Technology Committee of Beibei District,Chongqing(2012-11)~~
文摘[Objective] Climatic productivity was applied to forecast and analyse the vegetable yield. [Method] Climatic productivity model presented by Zhou and the long-range climate forecasting method were adopted to analyse characteristics of the change of climatic productivity potential at Beibei District in combination with the ac- tual vegetable yield. [Result] The change of climatic productivity at Beibei District was fluctuant in an stable overall trend. The difference of spatial distribution of cli- matic productivity was apparent, with high climatic productivity potential in the north- east; in the actual production, vegetable yield was declining and it was the same with the climate use efficiency; according to the prediction, the vegetable yield would increase slightly in the future 10 years. [Conclusion] This study provides bases for the reasonable plan and layout of vegetable plantation under the climatic condition at Beibei District, as well as the selection of vegetable cultivars.
基金the Public Research Institute Fun-damental Research Foundation of the Institute of Atmospheric Environment of ChinaChina Meteororlgical Administration(No.2011IAE-CMA01)+1 种基金National Natural Science Foundation of China(No.41171199)the Special Climate Change Research Program Foundation of China Meteororlgical Administration(No.062700s010c01)for providing supports
文摘This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing'anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China's territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing'anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a positive role in the mitigation of climate change.
基金funded by the National Basic Research Program of China (973 Program,No.2010CB428902)
文摘The biogenic silica (BSi) ,total organic carbon (TOC) ,total nitrogen (TN) and grain size were analyzed with a gravity core (3250-6) collected from the mud area in the north East China Sea.The average deposition rate of the upper core was about 0.078cm yr1based on the results of 210Pbex.The mean grain size increased with depth in general.The frequency distribution of grain size showed that two marked changes of deposition environment occurred at 30 cm and 50 cm depths (about 1550 AD and 1300 AD,respectively) .The variations of BSi and TOC indicated two distinct major periods of primary productivity over the past 800 years:a stage of low primary productivity corresponding to weak upwelling and low nutrient input below 30 cm depth (about 1200-1550 AD) ,and a stage of high primary productivity with strong currents and upwelling above 30 cm depth (about 1550-1950 AD) .The stage with high primary productive appeared to be due to the northward-expanded muddy area caused by strong Asian Winter Monsoon and enhanced Yellow Sea Warm Current in winter.In conclusion,the BSi and TOC in the muddy sediments,the symbols of marine primary productivity,can be then used to investigate the evolution history of currents and relative climate change in the offshore areas.
基金the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060104)
文摘In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.
基金the National Basic Research Program of China (No.2009 CB219605)the Key Program of the National Natural Science Foundation of China (No.4073042)the Key Program of the National Science and Technology of China (No.2008ZX05034-04)
文摘Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas production control are conducted by using COMET3 reservoir modeling software.The results show that in the next 20 years,the cumulative and average daily gas production of the QN01 well are expected to be 800×104 m3 and 1141.1 m3/d,for the QN02 well 878×104 m3 and 1202.7 m3/d and 97.5×104 m3 and 133.55 m3/d for the QN03 well.Gas content and reservoir pressure are the key factors controlling gas production in the area;coal thickness,permeability and porosity are less important;the Langmuir volume,Langmuir pressure and adsorption time have relatively small effect.In the process of CBM recovery,the material source and driving force are the key features affecting gas productivity,while the permeation process is relatively important and the desorption process has some impact on gas recovery.
基金funded by the National Natural Science Foundation of China(Grant No.41171084)the Natural Science Foundation of Tibet Autonomous Region(Response of species richness and aboveground biomass to warming in the alpine meadows of Tibet)
文摘Predicting how human activity will influence the response of alpine grasslands to future warming has many uncertainties.In this study, a field experiment with controlled warming and clipping was conducted in an alpine meadow at three elevations(4313 m, 4513 m and 4693 m) in Northern Tibet to test the hypothesis that clipping would alter warming effect on biomass production.Open top chambers(OTCs) were used to increase temperature since July,2008 and the OTCs increased air temperature by approximately 0.9o C ~ 1.8o C during the growing in2012.Clipping was conducted three times one year during growing season and the aboveground parts of all live plants were clipped to approximately 0.01 m in height using scissors since 2009.Gross primary production(GPP) was calculated from the Moderate-Resolution Imaging Spectroradiometer GPP algorithm and aboveground plant production was estimated using the surface-measured normalized difference vegetation index in 2012.Warming decreased the GPP, aboveground biomass(AGB) and aboveground net primary production(ANPP) at all three elevations when clipping was not applied.In contrast, warming increased AGB at all three elevations, GPP at the two lower elevations and ANPP at the two higher elevations when clipping was applied.These findings show that clipping reduced the negative effect of warming on GPP, AGB and ANPP, suggesting that clipping may reduce the effect of climate warming on GPP, AGB and ANPP in alpine meadows on the Tibetan Plateau, and therefore, may be a viable strategy for mitigating the effects of climate change on grazing and animal husbandry on the Tibetan Plateau.
文摘A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs in a coalbed gas field in central China to optimize wellsite locations in the studied area in combination with the dynamic data about actual production in the coalbed gas field, selects a favorable subarea for gas wells deployment. The method is established based on the basic properties of coal reservoirs, in combination with the coalbed thickness and the gas content to make an analysis of the gas storage potential of a coal reservoir, as well as resources volume and the permeability of a coal reservoir. This method can be popularized for optimization of wellsite locations in other methane gas development areas or blocks.
基金This study was co-supported by the National Key R&D Program of China[grant number 2017YFA0604302]the National Natural Science Foundation of China[grant numbers 41475099 and 41875137]the Chinese Academy of Sciences Key Research Program of Frontier Sciences[grant number QYZDY-SSW-DQC002].
文摘Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the regional and site-scale terrestrial ecosystem productivity.So far,only one work has quantified their global impacts on terrestrial ecosystem productivity based on offline simulations,which,however,did not consider the impacts of aerosol–cloud interactions and aerosol–climate feedbacks.This study quantitatively assesses the influence of fire aerosols on the global annual gross primary productivity(GPP)of terrestrial ecosystems using simulations with the fully coupled global Earth system model CESM1.2.Results show that fire aerosols generally decrease GPP in vegetated areas,with a global total of−1.6 Pg C yr^−1,mainly because fire aerosols cool and dry the land surface and weaken the direct photosynthetically active radiation(PAR).The exception to this is the Amazon region,which is mainly due to a fire-aerosol-induced wetter land surface and increased diffuse PAR.This study emphasizes the importance of the influence of fire aerosols on climate in quantifying global-scale fire aerosols’impacts on terrestrial ecosystem productivity.
基金Supported by National Natural Science Foundation of China (No.60472078 and No.90604013) .
文摘This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is used as fairness index to analyze the fairness of WLANs instead of the channel access probability (CAP) used in the distributed coordination function (DCF). The standard COT is given by access point (AP) and broadcasted to all wireless stations. The AP and wireless stations in the WLAN can achieve COT-based fairness by adjusting their packet length, sending the multiple back-to-back packets at one time, or giving up an opportunity to access the channel. Analysis and simulations show that our algorithm can provide COT-fairness. Compared with the CAP-based algorithm, the proposed algorithm leads to improvements in aggregate throughput of IEEE 802. lib multi-rate WLANs.
基金Supported by National Natural Science Foundation of China(Grant No.40871257,40635029)State Key Development Program of Basic Research of China(973Program)(Grant No.2006CB400505)
文摘A number of studies indicate that global climate warming has been increasing, especially in recent decades. Climate warming greatly affects global agro-production and food security-- becoming a hotspot of global environmental change. This paper proposes a structural and orientational framework for scientifically addressing climatic change impact on agroroduction. Through literature reviews and comparative studies, the paper systematically summarizes influencing mechanisms and impact of climate warming on such agro-production factors as light, temperature, soil quality and water environment. The impact of climate warm- ing on cultivation regions, cropping systems, crop pests, agro- production capacity, agro-economy and farm management is analyzed. Then, suitable climate-adapting agro-development strategies are put forward for different regions in China. The strategies are carefully selected from a repository of international tested climatic change countermeasures in agriculture at national or district level.
基金supported by the fund for Special Climate Change in 2010 from China Meteorological Administration(No.CCFS-2010)by a grant from the National Natural Science Foundation of China(No.41275097)
文摘Due to climate change, the regional agro-climatic conditions in Southwest China have undergone changes. The heat sources for the growth of crops have been improved. The number of days with temperatures steadily above 0℃ and 10℃ (two criteria) have increased during 1960-2010. The area suitable for multiple cropping has increased; the growth period has shortened; the climatic potential productivity has declined; the pest damage has worsened. During 1986-2010, the desired cooling degree days in Southwest China has increased at 38.9℃ d per decade. Forest fires and pests have increased. The area of meadow and wetlands has decreased. Heterogeneous invasion has intensified; endangered animal and plant species have increased. The tourism landscape has been damaged.' The risk of human health has increased. In the 21st century, with the increase of temperature and precipitation, the number of days with temperature steadily above 10℃ and the accumulated temperature will continue to increase, most notably in the Qinghai-Tibetan Plateau. The area of intercropping will expand; multiple cropping will move to higher altitudes. The impacts of agro- meteorological disasters, pests and diseases will intensify. The summer cooling energy consumption continues to increase; energy supply will show larger variability; the gap between energy supply and demand will be widened. The phenology will keep on changing, and the habitat will be worsening. Biological population will move northward and to higher altitudes. Some species are at risk of extinction. Negative effects on health will increase.
文摘It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.