Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic propert...Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic properties of the samples have been investigated.Characterization results show that the heptazine-based conjugate heterocyclic structure was formed over 500℃,which is attributed to the inhibitory effect of ammonia from the decomposition of NH4SCN.Precise nanosheet morphology and an increased pore distribution with an enlarged surface area are observed for the samples obtained under high temperatures.Optical analysis results show that the bandgap of the samples widens and photoluminescene intensity is gradually quenched as the treating temperature is increased.The results demonstrate that a higher polymerization temperature improves the nanolayer structure,porosity and migration rate of the photo-induced carriers of the samples.The pg-C3N4 nanosheets prepared at 600℃ presents the highest photocatalytic activity for hydrogen evolution from water under visible-light irradiation.This study demonstrates a novel strategy for the synthesis and optimization of polymer semiconductor nanosheets with gratifying photocatalytic performance.展开更多
The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts...The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.展开更多
Photocatalytic water splitting is an economical and sustainable pathway to use solar energy for large‐scale H2production.We report a highly efficient noble‐metal‐free photocatalyst formed by integrating amorphous N...Photocatalytic water splitting is an economical and sustainable pathway to use solar energy for large‐scale H2production.We report a highly efficient noble‐metal‐free photocatalyst formed by integrating amorphous NiS with a CdS nanorods(NRs)/ZnS heterojunction material for photocatalytic H2production in water under visible light irradiation(?>420nm).The results show that the photocatalytic H2production rate reaches an optimal value of up to574μmol·h–1after the loading of NiS,which is more than38times higher than the catalytic activity of pure CdS NRs.The average apparent quantum yield is^43.2%during5h of irradiation by monochromatic420nm light.The present study demonstrates the advantage of integration strategies to form not only semiconductor heterojunctions but also photocatalyst‐cocatalyst interfaces to enhance the catalytic activity for photocatalytic H2production.展开更多
The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at diffe...The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.展开更多
Carbon nitride(C_(3)N_(4))is promising for photocatalytic hydrogen production,but photogenerated electrons and holes in C_(3)N_(4)usually tend to exist as excitons due to intrinsic Coulomb interactions making its phot...Carbon nitride(C_(3)N_(4))is promising for photocatalytic hydrogen production,but photogenerated electrons and holes in C_(3)N_(4)usually tend to exist as excitons due to intrinsic Coulomb interactions making its photocatalytic activity unsatisfactory.Herein,a well‐designed intramolecular C_(3)N_(4)‐based donor‐acceptor(D‐A)photocatalytic system was constructed to promote exciton dissociation.Due to its good chemical compatibility with melamine and appropriate sublimation property,2‐amino‐4,6‐dichloropyrimidine unit was chosen as the monomer to react with melamine to construct intramolecular D‐A system(CNCl_(x)).The hydrogen evolution rate of CNCl_(0.15)is 15.3 times higher than that of bulk C_(3)N_(4)under visible light irradiation,with apparent quantum efficiency of 13.6%at 420 nm.The enhanced activity is attributed to introduced electron‐withdrawing−Cl group as terminal group in the resulted CNCl_(x) samples,which can build internal electric field to promote the exciton dissociation into free electron and hole.In addition,lower work function value of CNCl_(x) samples indicates that internal electric field can help free electrons and holes transfer to the surface of CNCl_(x) samples for photocatalytic reaction.展开更多
H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water split...H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.展开更多
Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to ...Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to investigate its performance of hydrogen-rich gas production. The effects of reaction temperature, catalyst and flow rate on gas concentrations (volume fraction), hydrogen yield, DME conversion ratio, specific energy consumption and thermal efficiency were investigated, respectively. The experimental results show that hydrogen concentration and the flow rate of produced H2 are improved when temperature increases from 300 ℃ to 700 ℃. Hydrogen yield, hydrogen concentration and the flow rate of produced H2 are substantially improved in the use of Fe-based catalyst at high temperature. Moreover, hydrogen yield and thermal efficiency are improved and change slightly when flow rate increases. When catalyst is 12 g, and flow rate increases from 35 mL/min to 210 mL/min, hydrogen yield decreases from 66.4% to 57.7%, and thermal efficiency decreases from 35.6% to 30.9%. It is anticipated that the results would serve as a good guideline to the application of hydrogen generation from hydrocarbon fuels by plasma reforming onboard.展开更多
The object of this study was to adapt in vitro system for morphogenesis and regeneration of microshoots of common milkweed (Asclepias syriaca L.) applying different concentrations of hydrogen ion (H+) and cytokin...The object of this study was to adapt in vitro system for morphogenesis and regeneration of microshoots of common milkweed (Asclepias syriaca L.) applying different concentrations of hydrogen ion (H+) and cytokinin 6-benzylaminopurine (BAP). The influence of BAP and hydrogen ion (H+) on the level of primary (chlorophyll a, chlorophyll b and carotenoids) and secondary (flavonoids and hydrolyzable and condensed tannins) metabolites in in vitro grown Asclepias syriaca L, were evaluated. Six different concentrations of BAP (0, 1, 2, 3, 4 and 5 ~tmol/L) and three different concentrations of hydrogen ion (pH 4.5, 5.0 and 5.5) were applied to the woody plant medium (WPM) medium used for microshoots propagation. The most effective morphogenesis of Asclepias syriaca L. was observed in culture medium supplemented with 2 p, mol/L BAP. However, synthesis of primary and secondary metabolites was the most intensive when cytokinin concentration reached the value of 3 gmol/L BAP. It was determined that the activity of hydrogen ion (H+), measured as the pH of culture medium, had a significant effect on secondary metabolites in the shoots in vitro.展开更多
A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2i...A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2is oxidized by water steam to produce Mn O at 450°C.(3)The Mn O compound is oxidized by air to yield Mn2O3.The X-ray diffraction(XRD)crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions.Long term experiments for continuous conversion of HCl to Cl2by using Mn2O3as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2on stream of 30 h.The production of Cl2from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.展开更多
Simultaneous generation of H_(2) fuel and value-added chemicals has attracted increasing attention since the photogenerated electrons and holes can be both employed to convert solar light into chemical energy.Herein,f...Simultaneous generation of H_(2) fuel and value-added chemicals has attracted increasing attention since the photogenerated electrons and holes can be both employed to convert solar light into chemical energy.Herein,for realizing UV-visible-NIR light driven dehydrogenation of benzyl alcohol(BA)into benzaldehydes(BAD)and H_(2),a novel localized surface plasmon resonance(LSPR)enhanced S-scheme heterojunction was designed by combining noble-metal-free plasmon MoO_(3-x) as oxidation semiconductor and Zn_(0.1)Cd_(0.9)S as reduction semiconductor.The photoredox system of Zn_(0.1)Cd_(0.9)S/MoO_(3-x) displayed an unconventional reaction model,in which the BA served as both electron donor and acceptor.The S-scheme charge transfer mechanism induced by the formed internal electric field enhanced the redox ability of charge carriers thermodynamically and boosted charge separation kinetically.Moreover,due to the LSPR effect of MoO_(3-x) nanosheets,Zn_(0.1)Cd_(0.9)S/MoO_(3-x) photocatalysts exhibited strong absorption in the region of full solar spectrum.Therefore,the Zn_(0.1)Cd_(0.9)S/MoO_(3-x) composite generated H_(2) and BAD simultaneously via selective oxidation of BA with high production(34.38 and 33.83 mmol×g^(–1) for H_(2) and BAD,respectively)upon full solar illumination.Even under NIR light irradiation,the H_(2) production rate could up to 94.5 mmol×g^(–1)×h^(–1).In addition,the Zn_(0.1)Cd_(0.9)S/MoO_(3-x) composite displayed effective photocatalytic H_(2) evolution rate up to 149.2 mmol×g^(–1)×h^(–1) from water,which was approximate 6 times that of pure Zn_(0.1)Cd_(0.9)S.This work provides a reference for rational design of plasmonic S-scheme heterojunction photocatalysts for coproduction of high-value chemicals and solar fuel production.展开更多
The utilization of Na2S/Na2SO3 mixture as the electrolyte solution to stabilize sulfide anode in a photoelectrochemical cell for hydrogen evolution generally compromises the current-to-hydrogen efficiency(ηcurrent)...The utilization of Na2S/Na2SO3 mixture as the electrolyte solution to stabilize sulfide anode in a photoelectrochemical cell for hydrogen evolution generally compromises the current-to-hydrogen efficiency(ηcurrent) of the system. Here, the employment of a dual-electrolyte system,that is, Na2S/Na2SO3 mixture and p H-neutral Na2SO4 as the respective electrolyte solutions in the anode and cathode chambers of a water splitting cell is demonstrated to suppress the photocorrosion of CuInS2-In2O3-TiO2 nanotube(CISIn2O3-TNT) heterostructure, while simultaneously boosts theηcurrent. Although n-type CIS and In2O3 nanoparticles can be easily formed on TNT array via facile pulse-assisted electrodeposition method, conformal deposition of the nanoparticles homogeneously on the nanotubes wall with preservation of the TNT hollow structure is shown to be essential for achieving efficient charge generation and separation within the heterostructure. In comparison to Na2S/Na2SO3 solution as the sole electrolyte in both the anode and cathode chambers, introduction of dual electrolyte is shown to not only enhance the photostability of the CIS-In2O3-TNT anode, but also lead to near-unity ηcurrentas opposed to the merely 20% ηcurrentof the single-electrolyte system.展开更多
Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electrici...Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electricity, are expected to be a key enabling technology for the pressing energy issues that plague our planet. Fuel cells require oxygen as an oxidant and require oxygen tank containers when used in air-free environments such as outer space and underwater. Hydrogen peroxide has been extensively uti- lized as an alternative liquid oxidant in place of gaseous oxygen. In addition to being an oxidant, hydrogen peroxide can donate electrons in the oxidation reaction to act as a fuel. This article provides an overview of the dual role of hydrogen peroxide in fuel-cell applications, including working principle, system design, and cell performance. Recent innovations and future perspectives of fuel cells that use hydrogen peroxide are particularly emphasized.展开更多
基金supported by the National Natural Science Foundation of China(21503096)the Natural Science Foundation of Jiangsu Province(BK20140507)~~
文摘Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic properties of the samples have been investigated.Characterization results show that the heptazine-based conjugate heterocyclic structure was formed over 500℃,which is attributed to the inhibitory effect of ammonia from the decomposition of NH4SCN.Precise nanosheet morphology and an increased pore distribution with an enlarged surface area are observed for the samples obtained under high temperatures.Optical analysis results show that the bandgap of the samples widens and photoluminescene intensity is gradually quenched as the treating temperature is increased.The results demonstrate that a higher polymerization temperature improves the nanolayer structure,porosity and migration rate of the photo-induced carriers of the samples.The pg-C3N4 nanosheets prepared at 600℃ presents the highest photocatalytic activity for hydrogen evolution from water under visible-light irradiation.This study demonstrates a novel strategy for the synthesis and optimization of polymer semiconductor nanosheets with gratifying photocatalytic performance.
文摘The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.
基金supported by the National Key Research and Development Program of China(2017YFA0402800)the National Natural Science Foundation of China(51772285,21473170)~~
文摘Photocatalytic water splitting is an economical and sustainable pathway to use solar energy for large‐scale H2production.We report a highly efficient noble‐metal‐free photocatalyst formed by integrating amorphous NiS with a CdS nanorods(NRs)/ZnS heterojunction material for photocatalytic H2production in water under visible light irradiation(?>420nm).The results show that the photocatalytic H2production rate reaches an optimal value of up to574μmol·h–1after the loading of NiS,which is more than38times higher than the catalytic activity of pure CdS NRs.The average apparent quantum yield is^43.2%during5h of irradiation by monochromatic420nm light.The present study demonstrates the advantage of integration strategies to form not only semiconductor heterojunctions but also photocatalyst‐cocatalyst interfaces to enhance the catalytic activity for photocatalytic H2production.
文摘The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.
文摘Carbon nitride(C_(3)N_(4))is promising for photocatalytic hydrogen production,but photogenerated electrons and holes in C_(3)N_(4)usually tend to exist as excitons due to intrinsic Coulomb interactions making its photocatalytic activity unsatisfactory.Herein,a well‐designed intramolecular C_(3)N_(4)‐based donor‐acceptor(D‐A)photocatalytic system was constructed to promote exciton dissociation.Due to its good chemical compatibility with melamine and appropriate sublimation property,2‐amino‐4,6‐dichloropyrimidine unit was chosen as the monomer to react with melamine to construct intramolecular D‐A system(CNCl_(x)).The hydrogen evolution rate of CNCl_(0.15)is 15.3 times higher than that of bulk C_(3)N_(4)under visible light irradiation,with apparent quantum efficiency of 13.6%at 420 nm.The enhanced activity is attributed to introduced electron‐withdrawing−Cl group as terminal group in the resulted CNCl_(x) samples,which can build internal electric field to promote the exciton dissociation into free electron and hole.In addition,lower work function value of CNCl_(x) samples indicates that internal electric field can help free electrons and holes transfer to the surface of CNCl_(x) samples for photocatalytic reaction.
文摘H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.
基金Project(21106002)supported by the National Natural Science Foundation of ChinaProject(2010DFA72760)supported by the Collaboration on Cutting-Edge Technology Development of Electric Vehicle,China
文摘Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to investigate its performance of hydrogen-rich gas production. The effects of reaction temperature, catalyst and flow rate on gas concentrations (volume fraction), hydrogen yield, DME conversion ratio, specific energy consumption and thermal efficiency were investigated, respectively. The experimental results show that hydrogen concentration and the flow rate of produced H2 are improved when temperature increases from 300 ℃ to 700 ℃. Hydrogen yield, hydrogen concentration and the flow rate of produced H2 are substantially improved in the use of Fe-based catalyst at high temperature. Moreover, hydrogen yield and thermal efficiency are improved and change slightly when flow rate increases. When catalyst is 12 g, and flow rate increases from 35 mL/min to 210 mL/min, hydrogen yield decreases from 66.4% to 57.7%, and thermal efficiency decreases from 35.6% to 30.9%. It is anticipated that the results would serve as a good guideline to the application of hydrogen generation from hydrocarbon fuels by plasma reforming onboard.
文摘The object of this study was to adapt in vitro system for morphogenesis and regeneration of microshoots of common milkweed (Asclepias syriaca L.) applying different concentrations of hydrogen ion (H+) and cytokinin 6-benzylaminopurine (BAP). The influence of BAP and hydrogen ion (H+) on the level of primary (chlorophyll a, chlorophyll b and carotenoids) and secondary (flavonoids and hydrolyzable and condensed tannins) metabolites in in vitro grown Asclepias syriaca L, were evaluated. Six different concentrations of BAP (0, 1, 2, 3, 4 and 5 ~tmol/L) and three different concentrations of hydrogen ion (pH 4.5, 5.0 and 5.5) were applied to the woody plant medium (WPM) medium used for microshoots propagation. The most effective morphogenesis of Asclepias syriaca L. was observed in culture medium supplemented with 2 p, mol/L BAP. However, synthesis of primary and secondary metabolites was the most intensive when cytokinin concentration reached the value of 3 gmol/L BAP. It was determined that the activity of hydrogen ion (H+), measured as the pH of culture medium, had a significant effect on secondary metabolites in the shoots in vitro.
基金Supported by the National High Technology Research and Development Program of China(2011AA060703)the Innovation Funds of institute of processes engineering of Chinese Academy of Sciences(062702)
文摘A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2is oxidized by water steam to produce Mn O at 450°C.(3)The Mn O compound is oxidized by air to yield Mn2O3.The X-ray diffraction(XRD)crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions.Long term experiments for continuous conversion of HCl to Cl2by using Mn2O3as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2on stream of 30 h.The production of Cl2from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.
文摘Simultaneous generation of H_(2) fuel and value-added chemicals has attracted increasing attention since the photogenerated electrons and holes can be both employed to convert solar light into chemical energy.Herein,for realizing UV-visible-NIR light driven dehydrogenation of benzyl alcohol(BA)into benzaldehydes(BAD)and H_(2),a novel localized surface plasmon resonance(LSPR)enhanced S-scheme heterojunction was designed by combining noble-metal-free plasmon MoO_(3-x) as oxidation semiconductor and Zn_(0.1)Cd_(0.9)S as reduction semiconductor.The photoredox system of Zn_(0.1)Cd_(0.9)S/MoO_(3-x) displayed an unconventional reaction model,in which the BA served as both electron donor and acceptor.The S-scheme charge transfer mechanism induced by the formed internal electric field enhanced the redox ability of charge carriers thermodynamically and boosted charge separation kinetically.Moreover,due to the LSPR effect of MoO_(3-x) nanosheets,Zn_(0.1)Cd_(0.9)S/MoO_(3-x) photocatalysts exhibited strong absorption in the region of full solar spectrum.Therefore,the Zn_(0.1)Cd_(0.9)S/MoO_(3-x) composite generated H_(2) and BAD simultaneously via selective oxidation of BA with high production(34.38 and 33.83 mmol×g^(–1) for H_(2) and BAD,respectively)upon full solar illumination.Even under NIR light irradiation,the H_(2) production rate could up to 94.5 mmol×g^(–1)×h^(–1).In addition,the Zn_(0.1)Cd_(0.9)S/MoO_(3-x) composite displayed effective photocatalytic H_(2) evolution rate up to 149.2 mmol×g^(–1)×h^(–1) from water,which was approximate 6 times that of pure Zn_(0.1)Cd_(0.9)S.This work provides a reference for rational design of plasmonic S-scheme heterojunction photocatalysts for coproduction of high-value chemicals and solar fuel production.
基金supported by the Australian Research Council (DP170102895)
文摘The utilization of Na2S/Na2SO3 mixture as the electrolyte solution to stabilize sulfide anode in a photoelectrochemical cell for hydrogen evolution generally compromises the current-to-hydrogen efficiency(ηcurrent) of the system. Here, the employment of a dual-electrolyte system,that is, Na2S/Na2SO3 mixture and p H-neutral Na2SO4 as the respective electrolyte solutions in the anode and cathode chambers of a water splitting cell is demonstrated to suppress the photocorrosion of CuInS2-In2O3-TiO2 nanotube(CISIn2O3-TNT) heterostructure, while simultaneously boosts theηcurrent. Although n-type CIS and In2O3 nanoparticles can be easily formed on TNT array via facile pulse-assisted electrodeposition method, conformal deposition of the nanoparticles homogeneously on the nanotubes wall with preservation of the TNT hollow structure is shown to be essential for achieving efficient charge generation and separation within the heterostructure. In comparison to Na2S/Na2SO3 solution as the sole electrolyte in both the anode and cathode chambers, introduction of dual electrolyte is shown to not only enhance the photostability of the CIS-In2O3-TNT anode, but also lead to near-unity ηcurrentas opposed to the merely 20% ηcurrentof the single-electrolyte system.
基金fully supported by a grant fromthe Research Grants Council of the Hong Kong Special Administrative Region,China(HKUST9/CRF/11G)
文摘Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electricity, are expected to be a key enabling technology for the pressing energy issues that plague our planet. Fuel cells require oxygen as an oxidant and require oxygen tank containers when used in air-free environments such as outer space and underwater. Hydrogen peroxide has been extensively uti- lized as an alternative liquid oxidant in place of gaseous oxygen. In addition to being an oxidant, hydrogen peroxide can donate electrons in the oxidation reaction to act as a fuel. This article provides an overview of the dual role of hydrogen peroxide in fuel-cell applications, including working principle, system design, and cell performance. Recent innovations and future perspectives of fuel cells that use hydrogen peroxide are particularly emphasized.