采用间歇发酵实验,研究了葡萄糖浓度、接种量、温度、氮源、不同有机底物对发酵产氢产酸细菌新菌种B49(AF48ll48 in EMBL)生物产氢的影响。结果表明,接种量影响B49的产氢;B49生长和产氢适宜温度均为35℃;B49不能利用无机氮源,而有机氮是...采用间歇发酵实验,研究了葡萄糖浓度、接种量、温度、氮源、不同有机底物对发酵产氢产酸细菌新菌种B49(AF48ll48 in EMBL)生物产氢的影响。结果表明,接种量影响B49的产氢;B49生长和产氢适宜温度均为35℃;B49不能利用无机氮源,而有机氮是B49生长、产氢的适宜氮源;葡萄糖是B49发酵产氢的最适宜底物,当浓度为10g/L时,B49的葡萄糖利用率为100%,氢气得率为1.69mol H_2/mol glucose;此外,B49可利用小麦、大豆、玉米、土豆及糖蜜废水和啤酒废水产氢,其中利用糖蜜废水、啤酒废水产氢分别为137.9ml H_2/ g COD和49.9ml H_2/g COD。展开更多
To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen produc...To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture·h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H 2/g COD and 49.9 ml H 2/g COD, respectively.展开更多
文摘采用间歇发酵实验,研究了葡萄糖浓度、接种量、温度、氮源、不同有机底物对发酵产氢产酸细菌新菌种B49(AF48ll48 in EMBL)生物产氢的影响。结果表明,接种量影响B49的产氢;B49生长和产氢适宜温度均为35℃;B49不能利用无机氮源,而有机氮是B49生长、产氢的适宜氮源;葡萄糖是B49发酵产氢的最适宜底物,当浓度为10g/L时,B49的葡萄糖利用率为100%,氢气得率为1.69mol H_2/mol glucose;此外,B49可利用小麦、大豆、玉米、土豆及糖蜜废水和啤酒废水产氢,其中利用糖蜜废水、啤酒废水产氢分别为137.9ml H_2/ g COD和49.9ml H_2/g COD。
文摘To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture·h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H 2/g COD and 49.9 ml H 2/g COD, respectively.