This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution pro...This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.展开更多
The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we desi...The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.展开更多
The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring c...The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring configuration.The results indicated that the friction coefficient was the lowest under dry-sliding,and the highest in deionized water.The wear rate decreased to reach the minimum value of 1.39×10-15 m3/(N·m)in sea water and in deionized water,it increased to the maximum value of 5.56×10-15 m3/(N·m).The deionized water hindered the formation of tribo-oxide layer and lubricating film,which resulted in the largest friction coefficient and wear rate.In sea water,however,the corrosion products comprised of oxides,hydroxides and chlorides were found on the worn surface,and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance.It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.展开更多
Marsupenaeusjaponicus Bate is one of the most valuable cultured shrimp species in China and outdoor earthen pond farming is the most common method of culturing this organism. The need to increase soil usage efficiency...Marsupenaeusjaponicus Bate is one of the most valuable cultured shrimp species in China and outdoor earthen pond farming is the most common method of culturing this organism. The need to increase soil usage efficiency in aquaculture has been recognized and a great deal of research effort has been directed toward development of super-intensive farming systems. However, current research and development in this field is largely devoted to Litopenaeus vannamei Boone, while to M.japonicus Bate it has been neglected. In this study, a layered fanning system was designed and a 66-day study was conducted in M.japonicus Bate culture. The system comprised bracket and sand layers that divided a shrimp tank filled to a depth of 1.2 m into four water layers. Conventional tank culture (unlayered) was used as a control. The results show that survival rate, feed conversion efficiency and production of M.japonicus Bate in the layered farming system were 68%, 18%, and 0.59 kg/m^2, respectively, all of which are significantly higher than in the unlayered fanning system (P〈0.01). These findings confirmed the possibility of using a layered system to culture M. japonicus Bate.展开更多
Surface drilling was performed at the Luling Coal Mine,in Huaibei,to shorten the period required for gas draining.The experimental study was designed to reduce the cost of gas control by efficiently draining gas from ...Surface drilling was performed at the Luling Coal Mine,in Huaibei,to shorten the period required for gas draining.The experimental study was designed to reduce the cost of gas control by efficiently draining gas from the upper protected layer.The structural arraignment and technical principles of pressure relief via surface drilling are discussed.Results from the trial showed that gas drained from the surface system over a period of 10 months.The total amount of collected gas was 248.4 million m^3.The gas draining occurred in three stages:a growth period;a period of maximum gas production;and an attenuation period.The period of maximum gas production lasted for 4 months.During this time the methane concentration ranged from 60%to 90%and the average draining rate was 10.6 m^3/min.Combined with other methods of draining it was possible to drain 70.6%of the gas from middle coal seam groups.The amount of residual gas dropped to 5.2 m^3/ton,and the pressure of the residual gas fell to 0.53 MPa, thereby eliminating the outburst danger in the middle coal seam groups.The factors affecting pressure relief gas draining by surface drilling were analysed.展开更多
Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas producti...Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas production control are conducted by using COMET3 reservoir modeling software.The results show that in the next 20 years,the cumulative and average daily gas production of the QN01 well are expected to be 800×104 m3 and 1141.1 m3/d,for the QN02 well 878×104 m3 and 1202.7 m3/d and 97.5×104 m3 and 133.55 m3/d for the QN03 well.Gas content and reservoir pressure are the key factors controlling gas production in the area;coal thickness,permeability and porosity are less important;the Langmuir volume,Langmuir pressure and adsorption time have relatively small effect.In the process of CBM recovery,the material source and driving force are the key features affecting gas productivity,while the permeation process is relatively important and the desorption process has some impact on gas recovery.展开更多
基金Supported by the National Basic Research Program of China(2011ZX05060-0052009ZX05039-003)+2 种基金the National Natural Science Foundation of China(21106176)the President Fund of GUCAS(Y15101JY00)the National Science Foundation for Post-doctoral Scientists of China(20110490627)
文摘This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.
文摘The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.
基金Project(51674304) supported by the National Natural Science Foundation of ChinaProject(19B430013) supported by the Key Scientific Research Projects of Higher Education Institutions in Henan Province,ChinaProject(2017BSJJ013) supported by the Doctor Research Foundation of Zhengzhou University of Light Industry,China
文摘The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring configuration.The results indicated that the friction coefficient was the lowest under dry-sliding,and the highest in deionized water.The wear rate decreased to reach the minimum value of 1.39×10-15 m3/(N·m)in sea water and in deionized water,it increased to the maximum value of 5.56×10-15 m3/(N·m).The deionized water hindered the formation of tribo-oxide layer and lubricating film,which resulted in the largest friction coefficient and wear rate.In sea water,however,the corrosion products comprised of oxides,hydroxides and chlorides were found on the worn surface,and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance.It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.
基金Supported by the Science and Technology Plan of Qingdao(No.103-4-5-6-jch)the National Natural Science Foundation of China(No.31101916)+1 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2010CM060)the University Student Innovation Plan of Qingdao Agricultural University(No.201030)
文摘Marsupenaeusjaponicus Bate is one of the most valuable cultured shrimp species in China and outdoor earthen pond farming is the most common method of culturing this organism. The need to increase soil usage efficiency in aquaculture has been recognized and a great deal of research effort has been directed toward development of super-intensive farming systems. However, current research and development in this field is largely devoted to Litopenaeus vannamei Boone, while to M.japonicus Bate it has been neglected. In this study, a layered fanning system was designed and a 66-day study was conducted in M.japonicus Bate culture. The system comprised bracket and sand layers that divided a shrimp tank filled to a depth of 1.2 m into four water layers. Conventional tank culture (unlayered) was used as a control. The results show that survival rate, feed conversion efficiency and production of M.japonicus Bate in the layered farming system were 68%, 18%, and 0.59 kg/m^2, respectively, all of which are significantly higher than in the unlayered fanning system (P〈0.01). These findings confirmed the possibility of using a layered system to culture M. japonicus Bate.
基金supported by the Key Project of the Natural Science Foundation of China(No.70533050 and 51004106)the Fundamental Research Funds for the Central Universities (No.2010QNB02)
文摘Surface drilling was performed at the Luling Coal Mine,in Huaibei,to shorten the period required for gas draining.The experimental study was designed to reduce the cost of gas control by efficiently draining gas from the upper protected layer.The structural arraignment and technical principles of pressure relief via surface drilling are discussed.Results from the trial showed that gas drained from the surface system over a period of 10 months.The total amount of collected gas was 248.4 million m^3.The gas draining occurred in three stages:a growth period;a period of maximum gas production;and an attenuation period.The period of maximum gas production lasted for 4 months.During this time the methane concentration ranged from 60%to 90%and the average draining rate was 10.6 m^3/min.Combined with other methods of draining it was possible to drain 70.6%of the gas from middle coal seam groups.The amount of residual gas dropped to 5.2 m^3/ton,and the pressure of the residual gas fell to 0.53 MPa, thereby eliminating the outburst danger in the middle coal seam groups.The factors affecting pressure relief gas draining by surface drilling were analysed.
基金the National Basic Research Program of China (No.2009 CB219605)the Key Program of the National Natural Science Foundation of China (No.4073042)the Key Program of the National Science and Technology of China (No.2008ZX05034-04)
文摘Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas production control are conducted by using COMET3 reservoir modeling software.The results show that in the next 20 years,the cumulative and average daily gas production of the QN01 well are expected to be 800×104 m3 and 1141.1 m3/d,for the QN02 well 878×104 m3 and 1202.7 m3/d and 97.5×104 m3 and 133.55 m3/d for the QN03 well.Gas content and reservoir pressure are the key factors controlling gas production in the area;coal thickness,permeability and porosity are less important;the Langmuir volume,Langmuir pressure and adsorption time have relatively small effect.In the process of CBM recovery,the material source and driving force are the key features affecting gas productivity,while the permeation process is relatively important and the desorption process has some impact on gas recovery.