Human activities alter land use patterns and affect landscape sustainability. It is therefore very important to investigate the relationship between land use change and human activities. This study focuses on the dete...Human activities alter land use patterns and affect landscape sustainability. It is therefore very important to investigate the relationship between land use change and human activities. This study focuses on the detection of changing land use patterns in the Yanhe River Basin in northern Loess Plateau of China between 1995 and 2008. Landscape metrics were used to analyze the changing land use patterns and to explore the related anthropogenic driving forces. Results show that:1) Totally, 186 590 ha of croplands were converted into alternate land-use types (equivalent to 61.7% of the original cropland area). The majority of cropland areas were found to be converted into grassland and woodland areas (accounting for 55.9% and 4.9% respectively of the original cropland areas). 2) Both cropland and woodland demonstrated an increasing fragmentation tendency while grasslands showed a decreasing fragmentation tendency. 3) Multiple driving forces of land use change were thought to act together to changes in landscape metrics in the Yanhe River Basin. The anthropogenic driving forces were analyzed from four perspectives:ecological conservation policy, labor force transfer, industrial development, and rural settlement. The policy of the GfG (Grain for Green) project was the main driving factor which expedited the conversion from cropland to woodland and grassland. Industrial development was also found to affect land use change through the direct impact of economic activities such as oil exploration and agricultural production, or through indirect impacts such as the industrial structures readjustment. Labor force transfer from rural to urban areas was found to follow the industrial structure readjustment and further drove land use change from cropland to off-farm land use. Establishment of new tile-roofed houses instead of cave-type dwellings in rural settlements has helped to aggregate the original scattered land-use type of construction.展开更多
Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss...Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss Equation and county-level socioeconomic data to assess the changes in the ecosystem service of soil conservation between 2000 and 2010, and to analyze its spatial characteristics and driving factors in the southwestern China. The results showed that cropland in the southwestern China decreased by 3.74%, while urban land, forest, and grassland areas increased by 46.78%, 0.86%, and 1.12%, respectively. The soil conservation increased by 1.88 × 10^(11) kg, with deterioration only in some local areas. The improved and the degraded areas accounted for 6.41% and 2.44% of the total land area, respectively. Implementation of the Sloping Land Conversion Program and urbanization explained 57.80% and 23.90% of the variation in the soil conservation change, respectively, and were found to be the main factors enhancing soil conservation. The 2008 Wenchuan earthquake was one of the factors that led to the degradation of soil conservation. Furthermore, industrial adjustment, by increasing shares of Industry and Service and reducing those of Agriculture, has also promoted soil conservation. Our results quantitatively showed and emphasized the contributions to soil conservation improvement made by implementing ecological restoration programs and promoting urbanization. Consequently, these results provide basic information to improve our understanding of the effects of ecological restoration programs, and help guide future sustainable urban development and regional industrial restructuring.展开更多
The Yellow Sea (YS) environmental and ecological changes during the Holocene are driven by the interactions between the Yellow Sea Warm Current (YSWC), the East Asian Winter Monsoon (EAWM) and the Kuroshio Curre...The Yellow Sea (YS) environmental and ecological changes during the Holocene are driven by the interactions between the Yellow Sea Warm Current (YSWC), the East Asian Winter Monsoon (EAWM) and the Kuroshio Current (KC). We report marine biomarker records of brassicasterol, dinosterol and C37 alkenones in core ZY1 and core ZY2 from the South Yellow Sea (SYS) to reconstruct the spatial/temporal variations and possible mechanisms of phytoplankton primary productivity and community structure changes during the Mid-late Holocene. The contents of the corresponding biomarkers in the two cores are similar, and they also reveal broadly similar temporal trends. From 6kyr to 3kyr, the biomarker contents in the two cores were relatively low with small oscillations, followed by a distinct increase at about 3 kyr indicating productivity increases caused by a stronger EAWM. The alkenone/brassicasterol ratio (A/B) is used as a community structure proxy, which also showed higher values in both cores since 3 kyr, indicating increased haptophyte contribution to total productivity. It is proposed that the YS community structure has been mainly influenced by the YSWC, with stronger YSWC influences causing an increase in haptophyte contribution since 3 kyr. Some differences of the biomarker records between ZY2 and ZYI suggest spatial variations in response to YSWC and KC forcing. When the KC was intensified during the periods of 6-4.2kyr and 1.7-0kyr, the YSWC extended eastward, exerting more influence on core ZY1. On the other hand, when the KC weakened during 4.2-1.7 kyr, the YSWC extended westward, exerting more influence on the ZY2.展开更多
The current efficiency for NF3 formation was independent on the current density in the range of 200 to 1,000 mA·cm^2. The average values of NF3 current efficiencies on the BDD (boron-doped diamond) anode with t...The current efficiency for NF3 formation was independent on the current density in the range of 200 to 1,000 mA·cm^2. The average values of NF3 current efficiencies on the BDD (boron-doped diamond) anode with the boron-concentration of 2,500 ppm were 32.3% at 80℃, 63.3% at 100℃ and 59.7% at 120℃. The best current efficiencies for NF3 formation on the BDD anode with boron-concentrations of 2,500, 5,000 and 7,500 ppm were obtained at 100℃ and those were 63.3%, 73.3% and 56.2%, respectively. Although anode effect occurred on the BDD electrodes covered with a part of the surface of the spiculate structure, which had the boron-concentrations higher than 7,500 ppm, it did not take place on the BDD electrodes covered with the surface of diamond structure, even if the BDD electrode had the boron-concentration of 8,000 ppm.展开更多
Let (M, g) be an n-dimensional Riemannian manifold and T2M be its second- order tangent bundle equipped with a lift metric g. In this paper, first, the authors con- struct some Riemannian almost product structures ...Let (M, g) be an n-dimensional Riemannian manifold and T2M be its second- order tangent bundle equipped with a lift metric g. In this paper, first, the authors con- struct some Riemannian almost product structures on (T2M, g) and present some results concerning these structures. Then, they investigate the curvature properties of (T2M, g). Finally, they study the properties of two metric connections with nonvanishing torsion on (T2M, g: The//-lift of the Levi-Civita connection of g to TaM, and the product conjugate connection defined by the Levi-Civita connection of g and an almost product structure.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.40930528)State Forestry Administration of China(No.201004058)External Cooperation Program of Chinese Academy of Sciences(No.29GJHZ0948)
文摘Human activities alter land use patterns and affect landscape sustainability. It is therefore very important to investigate the relationship between land use change and human activities. This study focuses on the detection of changing land use patterns in the Yanhe River Basin in northern Loess Plateau of China between 1995 and 2008. Landscape metrics were used to analyze the changing land use patterns and to explore the related anthropogenic driving forces. Results show that:1) Totally, 186 590 ha of croplands were converted into alternate land-use types (equivalent to 61.7% of the original cropland area). The majority of cropland areas were found to be converted into grassland and woodland areas (accounting for 55.9% and 4.9% respectively of the original cropland areas). 2) Both cropland and woodland demonstrated an increasing fragmentation tendency while grasslands showed a decreasing fragmentation tendency. 3) Multiple driving forces of land use change were thought to act together to changes in landscape metrics in the Yanhe River Basin. The anthropogenic driving forces were analyzed from four perspectives:ecological conservation policy, labor force transfer, industrial development, and rural settlement. The policy of the GfG (Grain for Green) project was the main driving factor which expedited the conversion from cropland to woodland and grassland. Industrial development was also found to affect land use change through the direct impact of economic activities such as oil exploration and agricultural production, or through indirect impacts such as the industrial structures readjustment. Labor force transfer from rural to urban areas was found to follow the industrial structure readjustment and further drove land use change from cropland to off-farm land use. Establishment of new tile-roofed houses instead of cave-type dwellings in rural settlements has helped to aggregate the original scattered land-use type of construction.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010(No.STSN-04-01)
文摘Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss Equation and county-level socioeconomic data to assess the changes in the ecosystem service of soil conservation between 2000 and 2010, and to analyze its spatial characteristics and driving factors in the southwestern China. The results showed that cropland in the southwestern China decreased by 3.74%, while urban land, forest, and grassland areas increased by 46.78%, 0.86%, and 1.12%, respectively. The soil conservation increased by 1.88 × 10^(11) kg, with deterioration only in some local areas. The improved and the degraded areas accounted for 6.41% and 2.44% of the total land area, respectively. Implementation of the Sloping Land Conversion Program and urbanization explained 57.80% and 23.90% of the variation in the soil conservation change, respectively, and were found to be the main factors enhancing soil conservation. The 2008 Wenchuan earthquake was one of the factors that led to the degradation of soil conservation. Furthermore, industrial adjustment, by increasing shares of Industry and Service and reducing those of Agriculture, has also promoted soil conservation. Our results quantitatively showed and emphasized the contributions to soil conservation improvement made by implementing ecological restoration programs and promoting urbanization. Consequently, these results provide basic information to improve our understanding of the effects of ecological restoration programs, and help guide future sustainable urban development and regional industrial restructuring.
基金supported by the National Basic Research Program of China(973 Program 2010CB428901)the National Natural Science Foundation of China(Grant Nos.41221004,41020164005)the ‘111’ Project
文摘The Yellow Sea (YS) environmental and ecological changes during the Holocene are driven by the interactions between the Yellow Sea Warm Current (YSWC), the East Asian Winter Monsoon (EAWM) and the Kuroshio Current (KC). We report marine biomarker records of brassicasterol, dinosterol and C37 alkenones in core ZY1 and core ZY2 from the South Yellow Sea (SYS) to reconstruct the spatial/temporal variations and possible mechanisms of phytoplankton primary productivity and community structure changes during the Mid-late Holocene. The contents of the corresponding biomarkers in the two cores are similar, and they also reveal broadly similar temporal trends. From 6kyr to 3kyr, the biomarker contents in the two cores were relatively low with small oscillations, followed by a distinct increase at about 3 kyr indicating productivity increases caused by a stronger EAWM. The alkenone/brassicasterol ratio (A/B) is used as a community structure proxy, which also showed higher values in both cores since 3 kyr, indicating increased haptophyte contribution to total productivity. It is proposed that the YS community structure has been mainly influenced by the YSWC, with stronger YSWC influences causing an increase in haptophyte contribution since 3 kyr. Some differences of the biomarker records between ZY2 and ZYI suggest spatial variations in response to YSWC and KC forcing. When the KC was intensified during the periods of 6-4.2kyr and 1.7-0kyr, the YSWC extended eastward, exerting more influence on core ZY1. On the other hand, when the KC weakened during 4.2-1.7 kyr, the YSWC extended westward, exerting more influence on the ZY2.
文摘The current efficiency for NF3 formation was independent on the current density in the range of 200 to 1,000 mA·cm^2. The average values of NF3 current efficiencies on the BDD (boron-doped diamond) anode with the boron-concentration of 2,500 ppm were 32.3% at 80℃, 63.3% at 100℃ and 59.7% at 120℃. The best current efficiencies for NF3 formation on the BDD anode with boron-concentrations of 2,500, 5,000 and 7,500 ppm were obtained at 100℃ and those were 63.3%, 73.3% and 56.2%, respectively. Although anode effect occurred on the BDD electrodes covered with a part of the surface of the spiculate structure, which had the boron-concentrations higher than 7,500 ppm, it did not take place on the BDD electrodes covered with the surface of diamond structure, even if the BDD electrode had the boron-concentration of 8,000 ppm.
文摘Let (M, g) be an n-dimensional Riemannian manifold and T2M be its second- order tangent bundle equipped with a lift metric g. In this paper, first, the authors con- struct some Riemannian almost product structures on (T2M, g) and present some results concerning these structures. Then, they investigate the curvature properties of (T2M, g). Finally, they study the properties of two metric connections with nonvanishing torsion on (T2M, g: The//-lift of the Levi-Civita connection of g to TaM, and the product conjugate connection defined by the Levi-Civita connection of g and an almost product structure.