This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can ...This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can be satisfied only if there is sufficient bandwidth available during resource scheduling and allocation. Unsatisfied requests were held in a queue. The metric of bandwidth utilization ratio was used to quantify the performance of our algorithms. By theoretical analysis, our algorithms can improve the average bandwidth usage ratio significantly, about 8%~10% without adding much computation complexity. Moreover, our algorithms outperform next fit with fragmentation (NFF) algorithm when the bandwidth resource is scarce. In this paper, the contributions follows: Introducing bandwidth packing problem into wireless network; Proposing two new bandwidth packing algorithms for wireless network where the complicate scheduling algorithms are prohibited; Studying the average performance of our algorithms mathematically, which agree well with the simulation results.展开更多
The conversion of solar energyinto electricity reveals a huge importance in the production of"clean" energy, mainly when applied to decentralized production systems (micro-generation). However, there is the need t...The conversion of solar energyinto electricity reveals a huge importance in the production of"clean" energy, mainly when applied to decentralized production systems (micro-generation). However, there is the need to develop and optimize these processes in order to turn it more sustainable in economic and technological scoops. The main purpose of this work is to study the solar energy conversion into electricity through photovoltaic cells, characterizing the process efficiencies. This study intends to evaluate the energetic and exergetic efficiencies defining them as indicators in the formulation ofa sustainability index. All the procedures are in a theoretical scope with an illustrative example in the end of this work.展开更多
Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to...Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to their lower toxicity, higher biodegradability, selectivity and specific activity under extreme conditions than synthetic SACs. Main output of the project represents preparation of this yeast biosurfactant intended for washing of matrices contaminated by NAPL. The influence of cultivation media composition on biosurfactant production was studied and basic properties (critical micelle concentration (CMC), minimum surface tension) of isolated biosurfactants were compared with properties of synthetic surfactant with surface tension measurement. The interracial tension of the systems containing aqueous solutions of different concentrations and non-polar substances was measured with petroleum compounds (kerosene Jet A-l), aromatic and aliphatic hydrocarbons (represented by toluene and hexane). The solution of biosurfactant Yarrowia lipolytica (YAR) in the concentration range of 0-500 mg/L reduced interracial tension by 80% in all representative systems with model contaminants; biosurfactant Candida bombicola (CAN) was less efficient. Solubilization properties were proved with toluene and hexachlorocyclohexane (HCH) isomers alpha and gamma, and effective concentration of biosurfactants was determined as 100 mg/L for toluene and HCH. SACs produced by lipophilic yeast with non-toxic and non-pathogenic status (Yarrowia lipolytica, Candida sp., etc.) seem to be very promising. The results obtained will be used for the application of biosurfactants in the clean-up technologies as agents for the mobilization of non-polar contaminants as well as for stimulation of bioremediation processes.展开更多
Transgenic animal technology has been one of the fastest growing biotechnology areas. The exogenous genes have been introduced into the animal genome by genetic engineering, so that these genes can be inherited and ex...Transgenic animal technology has been one of the fastest growing biotechnology areas. The exogenous genes have been introduced into the animal genome by genetic engineering, so that these genes can be inherited and expressed by offspring to produce desired traits or evaluate function in elite livestock breeds. There are several methodologies for the production of transgenic animals, i.e., (1) microinjection of genes into pronuclei of fertilized ova; (2) DNA transfer by retroviruses; (3) injection of embryonic germ (EG)/embryonic stem (ES) cells previously treated with foreign DNA; (4) DNA transfer into cells and embryos with using liposomes; (5) exogenous DNA transfer while in vitro fertilization by using sperm; (6) electroporation of DNA into sperm, embryos or ova; (7) biolistics; (8) nuclear transfer (NT) with somatic cells, EG or ES cells; (9) germ line stem cell-mediated; (10) gene targeting; (! 1) gene silencing technology with RNA interference; (12) induced pluripotent stem cell; (13) zinc-finger nuclease gene targeting technology. Gene farming is one of the newest and most promising areas in modern biotechnology. Cattle, goats, sheep, pigs and rabbits are the main farm livestock species and fish is also used in transgenic technology. The question of "why make transgenic animals?" is very important. Some of the answers to this question are: (1) to obtain new knowledge; (2) to solve the genetic code; (3) to create genetic disease models; (4) to study the genetic control of physiological systems; (5) to improve animal production traits; (6) to produce new animal products. Transgenic technology is one of the main and important tools in the finding solutions to problems of growing population with their applications to different organisms, and takes more attention and interest every day. Transgenic technology creates opportunities and areas to play with organisms to fulfill the demands of people. Because of this, this paper based on mainly transgenic applications to take people's attention and exhibit its importance.展开更多
文摘This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can be satisfied only if there is sufficient bandwidth available during resource scheduling and allocation. Unsatisfied requests were held in a queue. The metric of bandwidth utilization ratio was used to quantify the performance of our algorithms. By theoretical analysis, our algorithms can improve the average bandwidth usage ratio significantly, about 8%~10% without adding much computation complexity. Moreover, our algorithms outperform next fit with fragmentation (NFF) algorithm when the bandwidth resource is scarce. In this paper, the contributions follows: Introducing bandwidth packing problem into wireless network; Proposing two new bandwidth packing algorithms for wireless network where the complicate scheduling algorithms are prohibited; Studying the average performance of our algorithms mathematically, which agree well with the simulation results.
文摘The conversion of solar energyinto electricity reveals a huge importance in the production of"clean" energy, mainly when applied to decentralized production systems (micro-generation). However, there is the need to develop and optimize these processes in order to turn it more sustainable in economic and technological scoops. The main purpose of this work is to study the solar energy conversion into electricity through photovoltaic cells, characterizing the process efficiencies. This study intends to evaluate the energetic and exergetic efficiencies defining them as indicators in the formulation ofa sustainability index. All the procedures are in a theoretical scope with an illustrative example in the end of this work.
文摘Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to their lower toxicity, higher biodegradability, selectivity and specific activity under extreme conditions than synthetic SACs. Main output of the project represents preparation of this yeast biosurfactant intended for washing of matrices contaminated by NAPL. The influence of cultivation media composition on biosurfactant production was studied and basic properties (critical micelle concentration (CMC), minimum surface tension) of isolated biosurfactants were compared with properties of synthetic surfactant with surface tension measurement. The interracial tension of the systems containing aqueous solutions of different concentrations and non-polar substances was measured with petroleum compounds (kerosene Jet A-l), aromatic and aliphatic hydrocarbons (represented by toluene and hexane). The solution of biosurfactant Yarrowia lipolytica (YAR) in the concentration range of 0-500 mg/L reduced interracial tension by 80% in all representative systems with model contaminants; biosurfactant Candida bombicola (CAN) was less efficient. Solubilization properties were proved with toluene and hexachlorocyclohexane (HCH) isomers alpha and gamma, and effective concentration of biosurfactants was determined as 100 mg/L for toluene and HCH. SACs produced by lipophilic yeast with non-toxic and non-pathogenic status (Yarrowia lipolytica, Candida sp., etc.) seem to be very promising. The results obtained will be used for the application of biosurfactants in the clean-up technologies as agents for the mobilization of non-polar contaminants as well as for stimulation of bioremediation processes.
文摘Transgenic animal technology has been one of the fastest growing biotechnology areas. The exogenous genes have been introduced into the animal genome by genetic engineering, so that these genes can be inherited and expressed by offspring to produce desired traits or evaluate function in elite livestock breeds. There are several methodologies for the production of transgenic animals, i.e., (1) microinjection of genes into pronuclei of fertilized ova; (2) DNA transfer by retroviruses; (3) injection of embryonic germ (EG)/embryonic stem (ES) cells previously treated with foreign DNA; (4) DNA transfer into cells and embryos with using liposomes; (5) exogenous DNA transfer while in vitro fertilization by using sperm; (6) electroporation of DNA into sperm, embryos or ova; (7) biolistics; (8) nuclear transfer (NT) with somatic cells, EG or ES cells; (9) germ line stem cell-mediated; (10) gene targeting; (! 1) gene silencing technology with RNA interference; (12) induced pluripotent stem cell; (13) zinc-finger nuclease gene targeting technology. Gene farming is one of the newest and most promising areas in modern biotechnology. Cattle, goats, sheep, pigs and rabbits are the main farm livestock species and fish is also used in transgenic technology. The question of "why make transgenic animals?" is very important. Some of the answers to this question are: (1) to obtain new knowledge; (2) to solve the genetic code; (3) to create genetic disease models; (4) to study the genetic control of physiological systems; (5) to improve animal production traits; (6) to produce new animal products. Transgenic technology is one of the main and important tools in the finding solutions to problems of growing population with their applications to different organisms, and takes more attention and interest every day. Transgenic technology creates opportunities and areas to play with organisms to fulfill the demands of people. Because of this, this paper based on mainly transgenic applications to take people's attention and exhibit its importance.